~ COMPUTER
SCIENCE
- For Class :

= 9th -1'0th
| . Pa_rt—2

Punjab Textbook Board, Lahore.

All rights are reserved with the Punjab Textbook Board. Lahore.
Prepared by: Punjab Textbook Board, Lahore.
Approved by: Federal Ministry of Education. Curriculum Wing, Islamabad.
vide its letter No. F.1-10/2005-Maths (Comp. Sc.) Dated July 8, 2006.

CONTENTS
Chapter # Page i
1 PROBLEM SOLVING 1
2 DATA TYPES, ASSIGNMENT AND 13
INPUT / OUTPUT STATEMENTS
3 CONTROL STRUCTURE 41
4 |ARRAYS ' 53
<] SUB-PROGRAM AND FILE HANDLING 61
6 GRAPHICS IN BASIC 79
w MICROSOFT WORD 89
* GLOSSARY 120
* INDEX 123
Authors

* Syed Zulqurnain Jaffery
Assistant Professor
COMSATS Institute of Information Technology.
Sector H-8, Islamabad.

* Ms. Shahina Naz * Mr. Asif Ali Magsi
Head. Department of Computer Science. Lecturer (Computer Science)
Islamabad Model College for Girls, College for Boys, Islamabad.
F-10.2. Islamabad.
Editor Supervision

% Mirza Mubasher Baig * Mr. Mazhar Hayat
Research Associate Subject Specialist
Department of Computer Science. Punjab Textbook Board, Lahore.

Lahore University of Management Sciences (LUMS), Lahore.

Chapter 1

PROBLEM SOLVING

1.1 INTRODUCTION

We solve problems and make decisions everyday at home, at work, at play,
and even at the general store. Some problems and decisions are very challenging, and
require a lot of thought, emotion, and research. However, whatever the nature of the
problem is, we always try to find multiple solutions so that we can have options to
choose the best one.

1.2 PROBLEM-SOLVING METHOD

Problem-solving is a skill which can be developed by following a well organized
approach. Programming is also a problem solving activity. If you are a good problem
solver, you have the potential to become a good programmer. Problem solving
methods are covered in many subject areas. Business students learn to solve problems
with the related systems approach, while engineering and science students use the
engineering and scientific methods. Programmers use the software development method.
The following steps can be followed to solve any kind of problem:

(i) Problem identification (ii) Specify requirements

tiii) Analyze the problem (iv) Design algorithm and draw flowchart
(v) Write the program (Coding) (vi) Test and Debug the program

(vii) Implement the program (viii) Maintain and update the program

~(ix) Document the program

1.2.1 Problem Identification ¢

At this stage the problem being solved is observed carefully. Major
areas of concern are identified and irrelevant information is filtered out.
Suppose we want to develop a simple calculator. Our major concern is how
basic arithmetic operations (addition, subtraction, multiplication and division)
are performed? How result should be displayed? How input should be accepted
etc.? We are not interested in how the Sine or Tan are calculated? How is the
quadratic equation solved? And how are other mathematical operations
performed? These are irrelevant to us, so we shall not bother about these. In
this way, by filtering out irrelevant information we can concentrate on the
actual problem. :

1.2.2 Specify Requirements

Most of the users can not explain their exact software requirements.
They are uncertain about what they want to do with the software. So they
appear with a vague set of requirements in mind which may lead to a wrong
solution, This stage demands to make clear the user’s requirements so that a
proper solution could be suggested. This stage involves the formation of a

1 NOT FOR SALE - PESRP

requirements document which describes the features the system is expected to
provide, the restrictions under which it must operate, and an abstract
description of the software which provide a basis for design and
implementation.

1.2.3 Analyze the Problem

At this stage the problem is decomposed nto sub-problems. Rather on
concentrating the bigger problem as a whole, we try to solve each sub-problem
separately. This leads to a simple solution. This technique is known as top=
down design (also called divide and conquer rule). Here we may ask certain
dlestions to approach the right solution i.e4,

(i) How many solutions are there to the given problem?

(i) Which one is the best solution?

(iii) Can the problem be solved on computer?

(iv) What are input and output? :

(v) How can the bigger problem be divided into sub-problems?

1.2.4 Design Algorithm and Draw Flowchart

Designing the algorithm requires to develop a finite list of steps to
solve a problem. It is then verified that whether the algorithm solves the
problem as intended or not. Writing algorithm is often the most difficult part
of the problem-solving process. Most computer algorithms petform at least
following three steps:

(i) Get data (Input)

(i) Perform computation (Processing)

(i) Display results (Output)

Once the algorithm has been designed, it should be verified through
desk checking. Desk Checking is an important part of algorithm design that is
often over-looked. To desk check an algorithm, we must carefully perform
each algorithm step just as a computer would do and verify that the algorithm
works as desired. The time and effort can be saved by locating and rectifying
algorithm errors at this stage.

A program is a set of instructions gwen to the computer to solve a particular
problem. It is written in a programming language. _ y
Desk Checking is the process of carefully observing the working of an algorithm, on
the paper, for some test data. Algorithm is provided a variable set of input for which
the output is examined.

Draw the Flowchart

After designing the algorithm, the next step is to draw a
flowchart. Flowchart, in fact, maps the algorithm to a pictorial
representation which helps in understanding the flow of control and

2 : 'NOT FOR SALE - PESRP

data in the algorithm. We shall discuss in detail the way the flowchart
is drawn, later in this chapter.

1.2.5 Write the Program (Coding)

This step involves the conversion of an algorithm to a program, written
in any programming language. For this purpose, the programmer must know
the syntax of the programming language chosen.

The grammatical rules of a programming language to write programs are veferred to
as syntax of that programming language.

1.2.6 Test and Debug the Program
This stage requires evaluating the program to verify that it works as
desired. Don’t rely on just one test case. Run the program several times using
different sets of data, making sure that it works correctly for every situation
provided in the algorithm. If it is not producing desired results, then errors
(bugs) must be pointed out and debugged. Debugging is the process of finding
and removing errors in the program. There can be three types of programming
erTors; syntax errors, run time errors (execution errors), and logical errors.
Debugging is the process of finding and removing errors in the program.
Syntax Errors
A syntax error occurs when the program violates one or more
grammatical rules of the programming language. These errors are
detected at compile time i.e., when the translator (compiler or
interpreter) attempts to translate the program. There can be many
reasons, for example trying to execute a wrong program statement or
command such as typing PINT instead of PRINT statement; or trying
to assign a value to a constant such as 5 = count etc.
Do You Know?
Division by zero is undefined.
Runtime Errors
A runtithe error occurs when the program directs the computer
to perform an illegal operation such as dividing a number by zero.
Runtime errors are detected and displayed by the computer during the
execution of a program. When a runtime error occurs, the computer
will stop executing the program and may display a diagnostic message
that helps in locating the error.
Logical Errors
Logic errors occur when a program follows a wrong logic. The
translator (compiler or interpreter) does not report any error message
for a logical error. These are the most difficult errors to locate. Logical
errors can be identified by just looking at the wrong output of the
program. Logic errors can only be detected by thoroughly testing the

3 NOT FOR SALE - PESRP

program, observing all variables closely and testing each path of logic
flow in the program.

1.2.7 Implement the Program

Once the program has been as tested thoroughly, it must be installed
or put into operation at the site where it will be used. This is known as
implementation of the program.

1.2.8 Maintain and Update the Program

Program maintenance is an ongoing process of upgrading the program
to accommodate new hardware or software requirements, and introducing
minor improvements. Essentially, it is the expansion, updating and
improvement of a program after its installation. Regular maintenance is
essential to the continued usefulness of a program. A proper maintenance
depends on the existence of complete documentation.

1.2.9 Document the Program

Documentation is a detailed description of a program’s algorithm,
design, coding method, testing, and proper usage. Documentation is valuable
for the users who rely upon the program on a day-to-day basis, and for the
programmer who may be called on to modify or update it.

There are no universally accepted standards concerning what should
be included in a program’s documentation. Although its contents will vary
‘somewhat depending on the complexity of the program, in general,
comprehensive documentation consists of the following:

° A description of what the program is supposed to do (software
requirement document).
» A description of the problem solution (the algorithm).

A description of the program design, including any aids used
(flowcharts, algorithms etc.).

= A description of the program’s testing process, including the test data
used and results obtained. :

J A description of all corrections, modifications, and updates made to
the program since it was put into operation.

. A user manual (user guide).

1.3 ALGORITHM :

An algorithm is a finite set of steps which, if followed, accomplish a particular
task. An algorithm must be clear, finite and effective. The simplest form of algorithm
is step-form algorithm (like a to-do list). It consists of a sequence of numbered steps.

1.3.1 Strategy for Developing Algorithm

Algorithm development involves the following steps to carry out. We
can proceed to correct solution of a particular problem by adopting the
following strategy.

4 NOT FOR SALE - PESRP

Step 1: Investigation
(i) Identify the processes.
(ii) Identify the major decisions.
(iii) Identify the repetitions.
(iv) Identify the variables. :
Step 2: Preliminary algorithm 3
(i) Devise a high-level (general) algorithm.
(i) Step through the algorithm. Does this "walk-through" reveal
any major problems? If it does then correct the problems.
Step 3: Refining the algorithm
(i) Incorporate any refinements indicated in step 2.
(i) Group together processes where appropriate.
(i) Group together variables where appropriate.
(iv) Test the algorithm again by stepping through it.
Let us consider the following example to understand the way of
approaching a solution to a problem.
Problem 1: You have to bake a cake in your house.
Step-form Algorithm ;
The following diagram shows the steps to follow to bake the cake.
v

Step1 Heat oven to 325°F

Milk
Flour

Step 2 Gather the ingredients Eggs
' SO EFTTE
==

Step 3 Mix ingredients thoroughly
ina bowl

Step 4 Pour the mixture into a
baking pan

Step 5 Bake in the oven
50 minutes

5 NOT FOR SALE - PESRP

Step 6 Repeat
Bake 5 minutes more

Until cake tap 'springs back when touched in the center

Step 7 Cool on arack before cutting

Step-form Algorithm: Baking a cake

Problem 2
Making tea: You have to make tea in your house.
Step-form Algorithm :
An initial attempt at an algorithm might be:
[. Put tea leaves in pot :
2. Boil water
3. Add water to pot
4, Wait 5 minutes
5. Pour tea into cup
First Refinement _ _
& These steps are probably not detailed enough to make tea. We therefore refine each
step into a sequence of further simpler steps: :
Step 1: Put tea leaves in pot
It might be refined to
1.1 Open box of tea
1.2 Extract one spoorful of tea leaves
1.3 Put spoonful into pot
1.4 Close box of tea .
Step 2: Boil water
"1t might be refined to
2.1 Fill kettle with water
2.2 Switch on kettle
2.3 Wait until water is boiled
2.4 Switch off kettle
Step 5: Pour tea into cup
It might be refined to
5.. Pour tea from pot into cup
until cup is full
=) Second Refinement
Some of the refined steps may be further refined. For example step 2 can be refined as:
Step 2.1 Fill kettle with water :
It might be refined to

6 ; NOT FOR SALE - PESRP

2.1.1 Put kettle under tap
2.1.2 Turn on tap

2.1.3 Wait until kettle is full
2.1.4 Turn off tap

Other steps may also require further refinement. After a number of reﬁnements the

robot is able to execute every step.

Original Algorithm First Refinement Second Refinement
1. Put tea leaves in 1.1 Open box of tea 1.1.1 Take tea box from shelf
pot ' " 1.1.2 Remove lid from box
; 1.2 Extract one spoonful
1.3 Put spoonful into pot
1.4 Close box of tea ~ 1.4.1 Put lid on box
s 1.4.2 Replace tea box on shelf
2. Boil Water 2.1 Fill kettle with water 2.1.1 Put kettle under tap

2.1.2 Turn on tap
2.1.3 Wait until kettle is full
2.1.4 Turn off tap

2.2 Switch on kettle _
2.3 Wait until water boiled 2.3.1 Wait until kettle whistles

3. Add water to pot

4. Wait 5 Minutes until pot is full
5. Pour tea into cup

2.4 Switch off kettle -
3.1 Pour water from kettle

5.1 Pour tea from pot into

cup until cup is

Example 1: Write an algorithm to find
the sum of first 50 natural numbers.
Algorithm
BEGIN
SUM =0
N=0
DO WHILE (N <= 50)
SUM = SUM + N
N=N+1
END DO
END

full

Example 2: Write an algorithm to find

| the factorial of a given number

Algorithm
BEGIN
facp=11
an—
PRINT “Enter a number”
INPUT num
FORn = 1 to num
fact = fact * n
NEXT n
PRINT fact

END

NOT FOR SALE - PESRP

1.4 FLOWCHART

Flowchart is the pictorial representation of an algorithm. It is a way of visually
presenting the flow of data, the operations performed within the system and the
sequence in which they are performed. The flowchart is similar to the layout plan of a
building. As we know a designer draws a layout plan before starting construction on a
building. Similarly, a programmer prefers to draw a flowchart prior to writing a
c(%mputer program. As in the case of drawmg of a layout plan, the flowchart is
drawn according to defined rules.

1.4.1 Symbols of Flowchart :

Flowcharts are usually drawn using some standard symbols; however,
other special symbols can also be developed when required. The standard
symbols which are frequently used in flowcharting are shown below:

‘Start/End of a flowchart

Processing

Input/output

e’
el
<> Decision making and branching
O
L

Connector

Off-page/On-page connector

Flow lines

Pre-defined Process

(functions/sub-rcutines)

Remarks

1.4.2 Guidelines for Drawing a Flowchart

a. In drawing a flowchart, all necessary requirements should be listed in a
logical order.

b. The flowchart should be clear, neat and easy to follow. There should
not be any ambiguity in understanding the flowchart.

c. The usual direction of the flowchart is from top to bottom or left to
right.

d. Only one flow line should come out from a process symbol.

8 NOT FOR SALE - PESRP

1.4.3

1.4.4

< oty = B st
Or »l;
Only one flow line must enter a decision symbol, but two flow lines,

one for each possible answer, must leave it.

4—<>————>
Only one flow line is used in conjunction with terminal symbol. Ensure
that the flowchart has a logical start and end.

l L)
[] 1

Write comments within Remarks symbol. We can use the remarks
(annotation) symbol to describe steps more clearly.

______ This is confidential data

If the flowchart becomes complex, it is better to use connector symbols
to reduce the number of flow lines. The intersection of flow lines
should be avoided to make it more effective and clear.

It is useful to test the validity of the flowchart by passing through it
with a simple test data.

Advantages Of Flowcharts
The benefits of flowcharts are:

(i) With the help of a flowchart, the logic of an algorithm can be
described more effectively.

(i) As flowcharts are part of the design document, hence
maintenance of operational programs becomes easy.

(i) ~ The flowcharts act as a guide for the program development.
Therefore, they help the programmer to put efforts more
efficiently on the underlying problem.

(iv) The flowchart helps in debugging process.

Limitations Of Flowcharts
(i) It is difficult to draw flowcharts for complex problems.

(ii) If alterations are required, the flowchart is to be redrawn.

9 _ NOT FOR SALE - PESHP

Example 3: Draw a flowchart to find the | Example 4: Draw a flowchart to
sum of first 50 natural numbers. find the factorial of a number

o) Comr)
[sum=0] Sl

l:gjg__, / REA_J‘% num /

| N=1f+1 | [fact=fact*n |

[SUM=SUM+N |

1. Fill in the blanks:
(i) The set of instructions given to the computer to solve a problem is

called

(i) The set of rules for writing programs in a programming language is
known as ~___ of the language.

(iii) Flowchartis a __representation of algorithm.

(iv) An algorithm solves a problem in number of steps.

(v) During __ , a problem is decomposed into multiple sub-
problems. .

(vij Debugging is the process of finding and removing in a
program. : _

(vii) Program refers to the installation of the program in the
user environment.

(viii) Occurrence of a error crashes the program.

2. Choose the correct answer:
(i) BASIC is a:
(a) High Level Language (b) Low Level Language

(c) Assembly Language (d) Machine Language |

10 NOT FOR SALF - PESRP

(v)
(vi)
(vii)

(viii)

(ix)

(x)

How many possible solutions are there for a problem?

(a) One (b) Two

(¢) Three (d) Multiple

Program upgradation refers to:

(a) Program enhancement (b) Program identification
(c) Program development (d) Program implementation
Which of the following tasks are performed by most of the algorithms?
(a) Input (b) Output

(c) Processing ~(d) \All of these
Typographical errors in BASIC statements are:

(a) Runtime errors (b) Logical errors

(c) Syntax errors (d) Execution errors

The diamond symbol represents the:

(a) Input/Output (b) Decision making

(c) Processing (d) } Rerr#u‘ks |

Division by zero is: O .

(a) Syntax error (b) Logical error

(¢) Runtime error (d) Not an error

Which of the following documents describe various features of the
software and the way it is used?

(a) Software requirement (b) Problem description
specification .

(¢) User manual (d) Algorithm

Algorithm is a:

(a) Requirement document (b) Design document

(c) Test document (d) user guide

The technique ‘Divide and Conquer’ is used to solve:

(a) Simple problems (b) Complex problems

(c) Large problems (d) Complex and large problems

Write T for True and F for False statements.

(1)
(ii)
(i)
(iv)
(v)
(vi)
(vii)
(vii)

(ix)

Syntax errors occur due to wrong program logic.
Top-down design is followed to solve complex problems.
Desl%checking is the process of verifying the working of an algorithrfi.

. Debugging is an important part of analysis.

Every stage of program development is documented.

A rectangle symbol is used for decision making in a flowchart.
Requirement document is not helpful at development stage.
The usual direction of flowchart is from right to left.
Annotation symbol is used for writing comments.

11 NOT FOR SALE - PESRP

7.
8.
9.

10.

What do you mean by problem solving? Briefly describe the problem solving

process.

What is debugging? How many types of errors can occur in a program’

Describe briefly. .

Define algorithm. Write a step-form algorithm for making a telephone call to

your friend.

What are the advantages of flowchart? Discuss limitation of flowchart.

Draw a flowchart to find the largest of three numbers.

Write an algorithm to calculate the area of a circle when the radius is given.

(area = 3.14 * radius * radius)

Answer the following short questions:

(i) List steps that should be followed to solve a problem.

(i) What is analysis? Describe its importance in solving a problem.

(iii) What method should be adopted to solve complex problems? Discuss
briefly.

(ivy What do you mean by syntax of a programming language! Is it
necessary to know the syntax for solving a problem on computer?

(v) Differentiate runtime errors and logical errors.

(vi) Why documentation is considered vital in problem solving process?
Give reasons. :

(vii) Is it necessary for an algorithm to solve a problem in finite number of
steps! If yes, why? ' ,

(viii) Writt% purpose of the following flowchart symbols:

Bt W S
e w [J (vi)

(ix) Compare flowchart and algorithm.

(x) Write an algorithm to calculate the distance covered by a car moving
at an average speed of v ms” in time t. The program should input
average speed v and time t. '

[Hint: s = wut, where s is the distance traveled]

ST e S = B b s B 2RI g
R e R TR A

(i) Program (i) Syntax (iii) Pictorial (iv) Finite
(v) Analysis (vi) Errors (vii) Implementation (viii) Runtime
() “ea () d (i) a (iv) d W)

&
(vi) b (vit) € Ao ve (ix) b (x d
(i) F (i) F (i) s = e ARl P,
(vi) T wi) F (vii) F (x) F f3

12 NOT FOR SALE - PESRP

Chapter 2

DATA TYPES, ASSIGNMENT AND
INPUT/OUTPUT STATEMENTS

2.1 INTRODUCTION

The BASIC language was developed by John Kemeny and Thomas Kurtz in
1963 at Dartmouth College, USA. It was invented as an instructional tool to teach
fundamental programming concepts to students. It was developed to address the
complexity issues of older languages. y

GW-BASIC is an interpreter for BASIC (Beginner’s All-Purpose Symbolic
Instruction Code) language. There are many other translators (compilers and
interpreters) for BASIC from different vendors such as QBASIC (Quick BASIC)
which provides a menu-driven environment to write and execute BASIC programs.
Here we shall refer to only GW-BASIC because it provides a simple and easy to use
environment. ;

2.2 MODES OF OPERATION
GW-BASIC can operate in two modes i.e., direct mode and indirect mode.
When GW-BASIC is loaded, it shows ok message. At this stage, it is in direct mode.
In direct mode, GW-BASIC commands are executed as they are typed. Results
of arithmetic and logical operations can be displayed immediately, but the commands
themselves are lost after execution. This mode is useful for debugging and for quick

computations that do not require a complete program.
Ok
PRINT 786/3
262

Ok

PRINT “ Welcome to GW-BASIC *
Weleome to GW-BASIC ;
Ok
Fig. 2.1: Example of Direct Mode
The indirect mode is used to type programs. Program statements are always
preceded by line numbers, and are stored in memory. The program loaded in memory
is executed by entering the RUN command (fig. 2.2).
Ok
auto
10 PRINT 786/3
20 PRINT “Welcome to GW-BASIC”
30 END
Ok

RUN

262
Welcome to GW-BASIC
Ok

Fig. 2.2: Example of Indirect Mode

13 NOT FOR SALE - PESRP

o GW-BASIC commands are executable instructions which are operated in the
direct mode. They do not require a preceding line number.

B GW-BASIC statements are written as a program and each statement is
preceded by a line number.

2.3 WRITING PROGRAMS IN GW-BASIC :
GW-BASIC provides an IDE (Integrated Development Environment) where
we can write, edit, save, load and execute BASIC programs (fig. 2.3).

02
ypyright Microsoft. 1983,1984

2.3.1 Create and Save the Program

The program is a file that contains specific instructions, or statements,
for the computer. In a GW-BASIC program, lines have the following format:
Line# statement(s)
where, Line# is an unsigned integer in the range from 0 to 65529 and
statement(s) is any valid GW-BASIC statement. A GW-BASIC program line
can not have more than 255 characters. However, there may be more than
one statement on a line. If so, each must be separated by a colon (). The
program’s statements are executed depending on line numbers in ascending
order. For example, if line 45 is typed after line 60, the computer would still
run line 45 before line 60.
Reuse of an existing line number causes all of the information contained in the
original line to be lost. You may erase some program lines by accident.

In order to use the program in future, we must save it. To save a file in
GW-BASIC, the following procedure is used:
(i) Press the F4 key or type SAVE command.
(i) Type a valid name (in quotes) for the program, and press the ENTER

key. The file is saved under the specified name.

.

= NOT FOR SALE - PESRP

24

2.3.2 Load the Program
Loading the program refers to bring it into memory from secondary
storage device such as hard disk, so that it can be used. A saved program can
be loaded by using the following procedure:
(i) Press the F3 key or type LOAD command.
(i) Type the name of an existing file (in quotes).
(iii) Press ENTER.
The file is loaded into memory, and is ready to list, edit, or run.
If the file does not exist or an invalid path is typed, an error message is displayed.
The default extension of GW-BASIC program is .bas
To save the file in a directory, you should specify the complete path with the file
name. Otherwise the file will be saved in the current working directory of GW-
BASIC.

2.3.3 Execute the Program

Execution of the program refers to carrying out instructions of the
program. The program must be loaded into memory (RAM) before execution.
Therefore to execute a program, first load it as described above. Then press F2
key or type RUN command, the output of the program will follow it.

Ok
10 LET x = 10: LET y = 20
20 PRINT “SUM = " x + y

Ok

LOAD “e’\sum.bas”

Fig. 2.4: Creating and saving the program Fig. 2.5: Loading and running the program

Structure of the BASIC Program

Every BASIC program should follow the following rules.

(i) Every program statement must begin with a line number

(i) It is a good practice to end every BASIC program with an END
statement. However, it is not mandatory.

(iii) Repetition of line numbers within a program is not allowed .

(iv) Two or more statements can be written on a line but they must be
separated by a colon (:)

(v) In BASIC, variables can be used without declaration.

(vi) In a BASIC program, the physical appearance of the program
statements does not matter. For example, in a program line number 90
can appear before line number 60; however the program statements
will always execute according to the ascending order of specified line
numbers.

15 NOT FOR SALE - PESRP

2.5 Character Set of BASIC _

Character set of a language defines all characters which are valid to use in
programs written in that language. The character set of GW-BASIC comprises of
alphabets, numeric and some special characters.

* The alphabets include uppercase and lowercase letters
S Numeric characters include digits from 0 to 9
B GW-BASIC characters set include the following special characters

Character

= Equal sign or assignment symbol.
+ Plus sign or string concatenation.
- Minus sign.
. Asterisk or multiplication symbol.
hite: Slash or division symbol.
s Caret, exponentiation symbol, or CTRL key.
(Left parenthesis.
) Right parenthesis.
% Percent or integer declaration.
Number sign or double-precision declaration.
$ Dollar sign or string declaration.
! Exclamation point or single-precision declaration.
[Left bracket.
1 Right bracket.
’ Comma.
- Double quotation marks or string delimiter.
, Period, dot, or decimal point.
. Single quotation mark, apostrophe, or remark indicator.
; Semicolon or carriage return suppressor.
Colon or line statement delimiter.
& Ampersand or descriptor for hexadecimal and octal number
conversion.
? Question mark.

16 NOT FOR SALE - PESRP

< Less than symbol.
> Greater than symbol.
s Backslash or integer division symbol.
@ "At" sign,
. Underscore.
BACKSPACE | Deletes last character typed.
ESC Erases the current line from the screen.
TAB Moves print position to next tab stop. Tab stops are every eight
columns.
ENTER Terminates input to a line and moves cursor to beginning of the
next line, or executes statement in direct mode.

2.6 RESERVED WORDS
Reserved words or keywords are the words, which have predefined meaning
in BASIC. These have predefined uses and cannot be used or redefined for any other

purpose in a BASIC program. Keywords cannot be used as variable names. Some of
the keywords of BASIC are IF, ELSE, THEN, WHILE etc.

2.7 VARIABLES
Variables are named memory locations (memory cells) which are used to store
program’s input data and its computational results during program execution.
~ As the name suggests, the value of a variable may change during the program
execution. If a variable is assigned no value, the GW-BASIC assumes the value of
variable to be zero in case of numeric variables and null to string variables.

2.7.1 Rules for Naming Variables in BASIC |
Each variable that is used in a BASIC program must have a name. The

name of a variable is used for further references made to it. The value of the

variable is accessed by its name. In GW-BASIC, there are some rules for

naming variables. These are:

(i) In GW-BASIC, a variable name can not be more than 40 characters
long. ;

(i) ~ The variable name may contain alphabets (both uppercase and
lowercase), numbers, and the decimal point.

(it) The first character in the variable name must be an alphabet.

(iv) Reserved words can't be used as variable names.

(v) Blank spaces are not allowed in variable names.

(vi) However, the last character of a variable name may be a special type
declaration character indicating the type of a variable.

If type of a variable is not specified, it is assumed as a Real type variable.

17 NOT FOR SALE - PESRP

2.7.2 Type Declaration Characters
In GW-BASIC, type declaration characters represent the type of
variable. Following type declaration characters are recognized in GW-BASIC.

Character | Type of Variable Example | Memory Required
$ String variable Name$ | String length
% Integer variable Marks% | 2 Bytes
! Single-precision variable Avg! 4 Bytes
Double-precision variable | Area# | 8 Bytes

2.7.3 Types of Variables
There are two basic types of variables:
® Numeric Variables :
o String Variables that can store strings of characters
Numeric Variables :
Numeric variables can store numeric values (Numeric values

_include both floating point numbers and whole numbers). If we don’t
specify the type of a numeric variable, GW-BASIC considers it as
single-precision. Single-precision variables can accurately handle
numbers up to six significant digits, however it can not handle seventh
significant digit accurately. If more accuracy is desired, we should
rather use double-precision.
String Variables :

' A string can be defined as a sequence of characters enclosed in
double quotations. A string variable can therefore store sequence of
characters. The nature of character string is entirely different from the
nature of numeric values. BASIC and other languages use different
formats for storing numetric and string data. In BASIC, a dollar sign ($)
followed by the name of the string variable. We can not perform the
same set of operations on strings that we can perform on numeric
values. For example, strings can not be added, subtracted, multiplied or
divided. There are some other operations that can be performed on
strings such as concatenation and comparison. T

Be very careful when making conversions between integer, ‘single=precision, and
double-precision variables. Otherwise you may lose accuracy accidentally.

2.8 CONSTANTS :

A constant is a quantity whose value can not be changed. Unlike a variable,
the value stored in a constant can't be changed during program execution. In BASIC,
there are two types of constants. These are numeric constants and string constants.

2.8.1 Numeric Constants

Numeric constants consist of integers, single-precision, or double-
precision numbers. Integer constants represent values that are counted and do

18 NOT FOR SALE - PESRP

29

not have a fractional part e.g., +56, -678, 8, etc. Single-precision or double-
precision numeric constants represent values that are measured and may
contain fractional part e.g., - 4.786, 5.0, 0.45 etc. Single-precision numeric
constants are stored with 7 digits (although only 6 may be accurate). Double-
precision numeric constants are stored with 17 digits of precision, and printed
with as many as 16 digits.

A single-precision constant is any numeric constant with either
® Seven or fewer digits '
® Exponential form using E
® A trailing exclamation point (!)
A double-precision constant is any numeric constant with either
@ Eight or more digits ' '
° Exponential form using D
e A trailing number sign (#) _ .
The following are examples of single- and double-precision numeric constants:

Single-Precision Constants Double-Precision Constants

23.08 342237861
-3.15E-04 - -5.35857D-06
2145.0 S)
37.4! Z 7645721.1334

2.8.2 String Constants : :

A string constant is a sequence of alphanumeric characters enclosed in
double quotation marks. The maximum length of a string constant is 255
characters. For example, “Lahore”, “4900”, “I love Pakistan” etc.

BASIC COMMANDS

Here are some commonly used commands of BASIC language.
2.9.1 AUTO Command

This command automatically generates line numbers in an increasing
order, each time the ENTER key is pressed. :
Syntax: _
° AUTO [line number] [, [increment]]
w AUTO .[,[increrhent]]
Interpretation: ¢
AUTO is useful for typing a program because it relieves us
typing line numbers again and again. In the above syntax [line number]
specifies the starting line number of the program, whereas [increment]

19 NOT FOR SALE - PESRP

specify the subsequent increment to the previous line number. The
default for both values is 10.

The period (.) can be used as a replacement for line number to
indicate the current line. If [increment] after the line number is omitted,
the last increment specified in an AUTO command is assumed.

If AUTO generates a line number that is already being used, an
asterisk appears after the number to warn that any input will replace
the existing line. However, pressing ENTER immediately after the
asterisk saves the line and generates the next line number.

AUTO is terminated by entering CTRL-BREAK or CTRL-C.
GW-BASIC will then return to command level.

Examples:
. AUTO 100, 20

Generates line numbers 100, 120, 140, and so on
s AUTO

Generates line numbers 10, 20, 30, 40, and so on
AUTO, 50

Generates line numbers starting from the line number specified

in the last AUTO command with the increment of 50
B AUTO

Generates line numbers starting from the current line number

(i.e., the last line number generated from the previous AUTO

command) with the increment specified in the previously

entered AUTO command.
Ok

2.9.2 CLEAR Command X =100

Ok

This command sets the values of all numeric variables
to zero, the values of all string variables to null opened Rl PRINT X

closes all files. 100
Ok
Syntax:
CLEAR _ CLEAR
Example: The adjoining figure shows the effect of oe
CLEAR command. PRINT X

4]
Ok

Fig. 2.6: Example of
CLEAR Command

2.9.3 CLS Command
This command is used to clear the screen.
Syntax:
CLS [n]

20 NOT FOR SALE - PESRP

Interpretation: :
Here n is optional, but it can take any of the following values:

Value of n Effect
0 Clears the screen of all text and graphics
1 Clears only the graphics
2 Clears only the text

Example: _
. CLS (Type CLS at command level)
o CLS 1

2.9.4 DELETE Command

This command is used to delete program lines or line ranges of loaded

program.

Syntax:
B DELETE [line number1][~ line number2]
° DELETE line numberl —

Examples:
o DELETE 70
- Deletes line 70.

e DELETE 50-150

2.9.5

Deletes lines 50 through 150, inclusively
. DELETE -80 :
- Deletes all lines from start up to including line 80
B DELETE 120-
Deletes all lines from line 120 to the end of the program

EDIT Command
This command is used to modify a program line.
Syntax:
. EDIT line number
B EDIT.
Interpretation:
line number is the number of the program line which we want to
edit. The period (.) refers to the current line.

Examples:
L] EDIT 140

Displays program line number 140 for editing
= EDIT.

Displays the current program line for editing

21 : NOT FOR SALE - PESRP

2.9.6 FILES Command _
This command is used to list the names of all files residing on the
specified drive.
Syntax:
FILES [pathname]
Interpretation:

[pathname] is the optional parameter which if omitted; the
command lists all files in the current directory of the selected drive.
Wildcards such as * (asterisk) and ? can also be used in pathname.
Question mark (?) is used to match any characters in the filename or
extension, and asterisk (*) is used for any filename or extension.
Examples: '

s FILES :

Lists all files in the current directory of the selected drive
& FILES “*.doc” :

Lists all files whose extension is doc
® FILES “D:*.*” :

Lists all files on the D: drive with any extension
- FILES “Mar?.xls” et

* Lists all files
» Whose extension is xIs
» Whose name consists of four characters
» First three characters of their names are Mar and the fourth
character could be any

SMINFO. SYS

FILES “Ci ™
G

<DIR>

Fig. 2.7: Example of FILES Command
2.9.7 KILL Command

This command is used to remove/delete a file from the disk.
Syntax: :
KILL filename
Interpretation:
KILL command is used to delete all types of files.

22 . NOT FOR SALE - PESRP

2.9.8

Examples:
® KILL “Inventory.bas”

Deletes the file Inventory.bas in the current directory
o KILL “G:\Goods\Inventory.*”

Deletes all files named Inventory with any extension
Be careful while using KILL command. Always specify the filename's
extension when using the KILL command. You may lose your data
accidentally while using this command.
LIST Command
This command is used to display a loaded program partially or

completely on the screen.

Syntax:
. LIST [line number] [- line number] [ﬁlename]
° LIST [line number —][filename]

Interpretation:
In the above syntax, all parameters are optional which if -
omitted; the command lists the last entered program. [line number] is a
valid line number within the range of 0 to 65529. If filename is not
specified with the LIST command, the specified lines of the last
typed/loaded program are listed.
Examples:
. LIST
Lists-all lines in the program

. LIST -20

Lists lines of the programs up to the line number 20

e LIST 10-20

Lists lines from 10 through 20
. LIST 20-
Lists lines 20 through the end of the program

i 9.9 LOAD Command

This command loads a file from disk to memory.
Syntax:
LOAD filename|[,r]
Interpretation:
filename is the name of the file to be loaded. If the [r] option is
used with LOAD command, the program runs after it is loaded.
Examples:
° LOAD “D:\fact.bas”
Loads the file named fact.bas from D: drive
° LOAD “D:\fact.bas”, r
Loads and executes the file fact.bas from D: drive

23 NOT FOR SALE - mnr :

2.9.10 MKDIR Command

This command is used to create a subdirectory.
Syntax:

MKDIR pathname
Interpretation

pathname identify the location where the subdirectory is
created. It is a string expression that should not exceed 63 characters.
Example

MKDIR "D:\Goods\Inventory"

Creates the subdirectory Inventory within the directory of
Goods.

2.9.11 NAME Command
This command is used to rename a file.
Syntax:
NAME old-filename AS new-filename
Interpretation:
The file will be renamed; the old-filename is replaced by the
new-filename
Example
NAME “Remarks.doc” AS “RMKS.doc”
Gives the name RMKS.doc to the file Remarks.doc

2.9.12 RENUM Command

"This command is used to renumber the program lines.
Syntax:

RENUM [new number], [old number] [,increment]
Interpretation

New number is the starting line number in the new sequence.
The default is 10. old number is the line in the current program where
renumbering is to begin. The default is the first line of the program,
increment is the increment to be used in the new sequence. The default

is 10.
Examples
. RENUM

Assign new numbers to the whole program (if different)
starting from line# 10 with the default increment of 10.

. RENUM 80, , 30
Assign new numbers to the whole program starting from the
line# 80 with the increment of 30 in line numbers.

® RENUM 150, 70, 50

24 NOT FOR SALE - PESRP

Assign new numbers to lines from 70 to the end of the program
such that the new sequence will start from 150 (i.e., line# 70
will be renumbered to 150) and an increment of 50 is made for
each next line.

2.9.13 RMDIR Command
This command is used to remove/delete a directory from the disk.
Syntax:
RMDIR pathname
Interpretation
The pathname is the path of an existing directory which should
not exceed 63 characters. The directory to be deleted must be empty
otherwise an error message will appear.
Example
- RMDIR “D:\GOODS\INVENTORY”
Deletes the subdirectory INVENTORY of the directory GOODS.

2.9.14 RUN Command
This command is used to execute the program currently in memory. If
the program is not in memory, it first load and then run it.
Syntax:
o RUN [line number] [, r]
s RUN filename [, r]
Interpretation
By default the RUN command starts executing the program
from the beginning. However, if the line number is specified then the
execution of the program starts from that particular line number.
When the filename is specified with RUN command, it closes all
opened files and deletes all memory contents before loading and
executing the specified file from the disk. The r option is used to keep
all data files opened during the execution of RUN command.
Example:
RUN “table.bas”, r
Executes table.bas without closing data files
If you are using the speaker on the computer, please note that executing the
RUN command will turn off any sound that is currently running and will reset to
Music Foreground.

2.9.15 SAVE Command
This command is used to save the program on the disk for later use.
Syntax:
° SAVE filename, [, a]
o SAVE filename, [, p]

25 NOT FOR SALE - PESRP

Interpretation :

By default GW-BASIC saves the file in a compressed binary
format. If the option [a] is specified, the file is saved in ASCII format.
The option [p]saves the file in an encoded binary format (protected
format). We can not list or edit a file saved in protected format,
however it can be executed.

Examples :
® SAVE “matrix.bas”, a

Saves the file matrix.bas in ASCII format
® SAVE “matrix.bas”, p

Saves the file in encoded binary format

2.9.16 SYSTEM Command
~ - This command is used to exit from GW-BASIC and return to
operating system environment. :
Syntax:
SYSTEM
Example :
: SYSTEM (Type in direct mode)
2.9.17LIST Command
f “This command is used to list all or part of the program currently in
memory to the printer.
Syntax:
LLIST [line number] [-line number]
LLIST [line number-]
Interpretation:
GW-BASIC always returns to command level after a LLIST is
' executed. The line range options for LLIST are the same as for LIST.
2.9.18 PRINT Command
i This command is used to print data at the printer.

(K

Syntax:
LPRINT [list of expressions] [;]
Interpretation:
list of expressions consists of the string or numeric expressions
separated by semicolons. string expressions is a string literal or variable
consisting of special formatting characters. The formatting characters
determine the field and the format of printed strings or numbers.
This statement is the same as PRINT, except that output goes
" to the printer. For more information about string and numeric fields
and the variables used in them, see the print statement. The LPRINT
statement assumes that the printer is an 80-character wide printer. To

- 26 ' ' NOT FOR SALE - PESRP

2.10

reset the number of characters that can be printed across the printed
page (assuming that the printer is wider than 80 characters), see the
* WIDTH statement.

2 9, 19 CONT Command

' This command is used to continue program execution after a break.
- Syntax:

CONT
Interpretation:

Resumes program execution after CTRL-BREAK, STOP halts
a program. Execution continues at the point where the break
happened. If the break took place during an INPUT statement,
execution continues after reprinting the prompt.

CONT is useful in debugging; in that it lets us set break points
with the STOP statement, modify variables using direct statements,
continue program execution, or use GOTO to resume execution at a
particular line number. If a program line is modified, CONT will be
invalid.

BASIC Statements
Here are some commonly uséd statements of BASIC language.

2.10.1 END Statement

This statement is used to terminate program execution, close all files

"and return to the command level.

Syntax:
END

2.10.2 REM Statements

This is a non-executable statement and is used to add explanatory

remarks in the program.

Syntax:
® REM [remarks]
® ¢ [remarks]
Example -

10 REM This program calculates the average of two numbers

20 a=15

30 b=25

40 avg=(a+ b) /2

50 * Display the average

60 PRINT “Average = “; avg

70 END

In this program line# 10 and line# 50 are non-executable. The

BASIC interpreter does nothing to these lines; they are not translated

27 ~ NOT FOR SALE - PESRF

to machine language during the translation process. The REM
statement however increases the readability of the code and helps in
modifying, understanding and debugging the program

2.10.3 STOP Statement

This statement is used to terminate program execution temporarily,
and return to command level.

Syntax:

STOP

Interpretation:

STOP statements may be used anywhere in a program to terminate
execution of the program. When a STOP statement is encountered in the
program, the following message is printed:

Break in line nnnnn '

Unlike the END statement, the STOP statement does not close files.
GW-BASIC always returns to command level after a STOP is executed.

Execution is resumed by issuing a CONT command.

Ok

auto

10 INPUT A, B, C!
2

o

40 M = C*K+100: PRINT M
60 END
Ok

3

iirca-.-a} n 30
Ok

PRINT L
20.76923
Ok
Continue
11569
Ok
Fig. 2.8: Example of CONT Command

OPERATORS IN BASIC

Operators are symbols which are used to perform certain operations on data.

These include arithmetic, relational, logical, and assignment operators.

2.11.1 Arithmetic Operators

Arithmetic operators are used to perform arithmetic operations on
values (numbers). The GW-BASIC defines the following standard arithmetic
operators: :

; Algebraic BASIC
Operation Symbol Expression Expression
Addition i ath a4b
Subtraction = a—b =

28 NOT FOR SALE - PESRP

Multiplication - aXb a*b
Division / a/b a/b
Exponent i o qaen
Negation g -a -a
Modulus MOD a MOD b a MOD b
Integral Division \ a\b a\b

The use of first six operators is straightforward. The last two operators
are modulus (also called remainder operator) and integral-division. Contrary
to the division operator which returns the quotient, the modulus operator
returns the remainder of an integral division. For example, if a, and b are two
integers having values 8 and 3 respectively, then the express a MOD b will be
evaluated to 2, which is the remainder of integral division. The integral-
division does not allow a fractional value in the quotient. It always returns the
quotient as a whole number. For example, the result of the expression a \ b
(for above two variables a and b) will be 2.

2.11.2 Relational Operators

Relational operators are used to compare two values. These operators
always evaluates to true or false. They always produce a non-zero value (in
most cases 1) if the relational expression evaluates to true, or a 0 value if the
relational expression evaluates to false. There ate six basic relational operators
in BASIC. Suppose a, b, and ¢ are three integer variables having values 123,
215 and 123 respectively then:

Operation Symbol | Expression Evaluation
Equal to (comparison) = a=c true (non-zero)
Less than < b<a false (zero)
Greater than > a>c false (zero)
Less than or Equal to e a<=b true (non-zero)
Greater than or Equal to == b=y false (zero)
Not Equal to <l a<>b | true (non-zero)

2.11.3 Logical Operators : :
Logical operators let us combine simple conditions to construct more
complex ones (By condition, we mean an expression evaluating to true or

false). There are three basic logical operators in BASIC. These are AND, OR,
and NOT.

The first logical operator i.e., AND when combines two conditions,
evaluates to true if both the conditions are true, otherwise, it evaluates to false.
The second logical operator OR when combines two conditions, evaluates to
true if any one of the conditions is true, otherwise evaluates to false. Similarly,
the third logical operator NOT when applied to a condition, reverse the result

Y 29 NOT FOR SALE - PESRP

of the evaluation. It means that if the condition evaluates to true, the logical
NOT operator evaluates to false and vice versa. In an expression, logical
operations are performed after arithmetic and relational operations. To
understand the working of these operators consider the following table:

Logical Value Value Result
Operation
> X - NOT X
NOT -T - F
F - iy
X T XANDY
T T T
AND T F F
F T F
F F F
X X XORY
45 iy T
OR T 3 T
F T T
F F F

Table 2.1: Results of logical operators

2.11.4 Concatenation Operators
All relational operators can be used g
with strings to perform comparison. In [PRITES

addition to relational operators another |[BECEECEESEN SEinE S
20 B$ = “Book Board”
30 PRINT A$ + BS

operation called string concatenation can
also be applied to string constants and |HFSEEEEES

variables. The symbol for string [ty

concatenation operation is ‘+’ and-it joins EeJS

two strings. Consider the adjoining figure] EiQei—.

showing the examplp ot string! | Punjab TextBook Board

) Ok
concatenation:

Fig. 2.9: String concatenation

2.11.5 Assignment Operator

The assignment operator is used to store a value, string or a
computational result in a variable. In BASIC, the symbol = represents the
operator i.e.
variable_name = expression
where expression may be a numeric or string expression. e.g.,
a=10
a$ = “Hello”

The value to the right side of the operator is assigned to the variable
on the left side of the assignment operator. This statement is also called

30 WFORM-m

assignment statement. Note it that the symbol ‘=" is also used for comparison;
however it depends on the context where it is used.

2.11.6 Operator Precedence .

An operator’s precedence determines its order of evaluation in an
expression. Table 2.2 lists the precedence of some of the BASIC operators
from highest to lowest.

Operator Precedence
e Highest

- (Negation)
" -
\
MOD
o
=<>, L, <= > >=
NOT
AND
OR - v
= (assignment operator) : Lowest

Table 2.3: ppemtors' precedence
2.12 TYPE CONVERSION

When the program tries to store one type of numeric value to the variable of
another type, GW-BASIC performs the type conversion according to the following
rules:

e If a numeric constant of one type is assigned to a numeric variable of a
different type, the number is converted accordmg to the type of the variable.
For example:

10 LET x% = 51.39 ‘integer variable — stormg a floating point value
20 PRINT x%

RUN

51

e During the evaluation of an expression (arithmetic or relational), all of the
operands are converted to the degree of precision of the most precise operand.
For example: -

10 A# = 12#/13
20 PRINT A#
RUN
.9230769230769231

31 | NOT FOR SALE - PESRP

The arithmetic is performed in double-precision, and the result is returned in
A# as a double-precision value.
10 A = 12#/13
20 PRINT A
RUN
. 9230769
The arithmetic is performed in double-precision, and the result is returned
to A (single-precision variable) rounded and printed as a single-precision
value.
e When a floating-point value is converted to an integer, the fractional portion
is rounded. For example:
10 num% = 23.67
20 PRINT num%
RUN
24

e A string variable cannot be assigned to a numeric value.

2.13 ASSIGNMENT STATEMENT
GW-BASIC presents two ways to assign the value of an expression to a
variable. First, by using assignment operator i.e., ‘=" which we have discussed in the
previous text and the second is by using LET statement. Amazingly it is the only
statement which itself is optional but whose parameters are mandatory.
Syntax:
[LET] variable =expression
Interpretation '
Here, the word LET is optional, however we must specify the variable
name and the expression whose value is to assign to the variable.
Example '
We have already seen some examples of LET statement in this text.
Let us consider another example:
10 REM Calculate Average of Two Numbers
20 LET m =24
30 LET n= 26
40 LETavg=(m +n) /2
50 PRINT “average = “; avg
60 END
RUN
average = 25
Note: This program can also be completed without using LET statement
INPUT/OUTPUT Statements
Like other high level programming languages, GW-BASIC also provide
statements to input data and show results. Input/Output statements make the

32 NOT FOR SALE - PESRP

program more interactive and usable. In this section we shall discuss some
basic input/output statements of GW-BASIC.
2.14 READ/DATA STATEMENT :
This statement is used to store the numeric and string constants that are
accessed by a READ statement specified somewhere in the program.

Syntax:

DATA comma-separated list of constants
Interpretation

Constants may be any string or numeric constant. String constants
must be enclosed in double quotation marks only if they contain commas,
colons, or spaces. Otherwise, quotation marks are not needed. The list of
constants with a DATA statement can not exceed one line. If the list is too
long to fit in one line then we should use another DATA statement to specify
the remaining list of constants. The data contained in multiple DATA
statements is assumed to be a single continuous list of items regardless of
where the DATA is placed in the program. The variable type (numeric or
string) given in the READ statement must agree with the corresponding
constant in the DATA statement.
Example
10 “This program demonstrates the use of DATA and READ statements
20 READ A, B, C$
30 PRINT C$; “=", (A+B)/2
40 DATA 10, 20, “Average”

50 END
RUN

* Average = 15
READ Statement

This statement reads valies from the DATA statement and assigns
them to corresponding variables.
Syntax: '
READ comma-separated list of variables
Interpretation '

The READ statement is the complementary part of the DATA
statement. The READ and DATA statements are always used in
conjunction. The READ statement specifies a list of variables and
reads the corresponding values for these variables from the list of
constants specified in DATA statement. It means the first variable in
READ statement is assigned the first value from the list of constants in
DATA statement; the second variable is assigned the second value,

- the third variable is assigned the third value and so on.

33 NOT FOR SALE - PESRP

However, we should be very careful about the type of the
variables and constants (in DATA statement) i.e., a numeric variable
must be assigned a numeric value and a string variable must be
assigned a string value. If the program tries to assign a string value to a
numeric variable or vice versa, a “type mismatch error” will occur.

A READ statement may read values from several DATA
statements (if there are more variables in READ statement than the
number of constants in DATA statement), similarly several READ
statements may read values from one DATA statement. If the number
of variables in list of variables exceeds the number of elements in the
DATA statement(s), an "Out of data" message occur. If the number of
variables specified is fewer than the number of elements in the DATA
statement(s), subsequent READ statements begin reading data at the
first unread element. If there are no subsequent READ statements, the
extra data is ignored.

Example:

10 REM In this program one READ statement reads data from two
DATA statements

20 REM This program calculates the perimeter of a pentagon, where
a,b,c,d,and e

30 REM are the lengths of sides of pentagon

40 READ A, B,C, D, E, P$

50 perimeter =a+b+c+d+e

60 PRINT P$; “ = “; perimeter

70 DATA 12, 18, 24

80 DATA 18, 35, perimeter

90 END

RUN

perimeter = 107

2.15 RESTORE statement :
This statement causes the DATA statement to be reused (if it has already been
used) by the READ statement.
Syntax:
RESTORE [line number]
Interpretation -

The line number specifies the line number of a DATA statement which
has to be read again. The next READ statement reads the first item in the
specified DATA statement. We can omit line number, if so the next READ
statement reads the first item in the first DATA statement.

le:

10 READ A, B,C
20 RESTORE

34 NOT FOR SALE - PESRP

30 READX, Y, Z

40 PRINT A, B, C

50 PRINT

60 PRINT X, Y, Z

70 DATA 10, 20, 30

80 DATA 40, 50, 60

90 END

RUN =
10 20 30
10 | 30

2.16 INPUT Statement
This statement is used to input data from the user during the program
execution.
Syntax:
e INPUT [;] [prompt string;] comma-separated list of variables
. INPUT [;] [prempt string,] comma-separated list of variables
Interpretation

Prompt string is the message that is displayed on the screen to assist the
user to input correct data. We can specify more than one variable with a single
INPUT statement. During program execution the values entered by the user
are assigned to the corresponding variables according to the same sequence in
which they are listed. The number of data items supplied by the user must be
the same as the number of variables in the list. The type of each data item
input must agree with the type specified by the variable name.

When a semicolon is used to separate the prompt string from the list of
variables (as in the first syntax) a question mark (?) appears at the end of the
prompt string. This question mark can be avoided by using a comma (as in the
second syntax) instead of the semicolon.

Example:

The following figure shows a program that demonstrates the use of

INPUT statement.

Fig.2.10: Example of INPUT statement

35 NOT FOR SALE - PESRP

When an INPUT statement is encountered during program execution,
the program halts, the prompt string is displayed, and the user types in the
requested data. Strings that input to an INPUT statement need not be
surrounded by quotation marks unless they contain commas or blanks.

2.17 PRINT Statement
This is the most frequently used statement in BASIC. Almost every program in
BASIC makes use of it. All the programs we have seen so far in this text have used it
in different ways. This statement is used to display text and numbers on the screen.
Syntax: ;
» PRINT (list of expressions] [;]
. ?{list of expressions] ;]
Interpretation :
Expressions in the list may be numeric and/or string expressions,
separated by commas, spaces, or semicolons. If we omit the list of expressions,
a blank line is printed. We can also use a question mark (?) instead of PRINT
statement. This will behave in the same way as the PRINT statement behaves.
When the two expressions in a PRINT statement are separated by a
semicolon (;), the second expression is displayed on the screen just after the
text of the first expression. GW-BASIC divides egch line into print zone of 14
spaces. We can also use a comma (,) instead of semicolon to separate
expressions; this causes the second expression to be displayed at the start of
next zone. :

The following figure shows the use print statement.

‘BALOCHISTAN: D= “NWFP": Ef= “KASHMIR"

T A$, B%, C%, D, E¢g -

SINDHPUNJABBALOCHISTANNWIPEASHMIK

SINDH PUNJAB BALODCHISTAN NWIP KABHMIR

Lahore

Fig. 2.11: Examples of PRINT statement

36 NOT FOR SALE - PESRP

2.18 PRINT USING Statement

This command is used to display numbers and strings on the screen in a

specified format.

Syntax:
PRINT USING string expressions; list of expressions [;]

Interpretation

String expressions is a string literal or variable consisting of special

formatting characters. The formatting characters determine the field and the
format of printed strings or numbers. List of expressions consists of the string or
numeric expressions separated by semicolons.

String Fields

The following three characters may be used to format the string field:

! - Specifies that only the first character in the string is to be printed.
\n spaces \ ~ specifies that 2+n characters from the string are to be
printed. If the backslashes are typed with no spaces, two characters are
printed; if the backslashes are typed with one space, three characters
are printed, and so on.

10 A$="Work": B$="Hard"

30 PRINT USING "'"; A$; B$

40 PRINT USING"\ \"; A$; B$

50 PRINT USING" \"; A$; B$;"!!"

RUN

WH

WorkHard

WorkHard!! -

& - Specifies a variable length string field. When the field is specified
with &, the string is output exactly as input.

Numeric Fields

field:

The following special characters may be used to format the numeric

— A hash sign is used to represent each digit position. Digit positions
are always filled. If the number to be printed has fewer digits than
positions specified, the number is right-justified (preceded by spaces) in
the field.

A decimal point may be inserted at any position in the field. If the
format string specifies that a digit is to precede the decimal point, the
digit always is printed (as O if necessary). Numbers are rounded as
necessary. For example:

> PRINT USING "##.##"; .85

> 0.85 :

» PRINT USING "###.##" 254.753

37 NOT FOR SALE - PESRP

» 254.75

» PRINT USING "##.##" ;10.2,5.3,66.789,.234

» 5.3066.79 0.23 ,
In the last example, three spaces were inserted at the end of the format
string to separate the printed values on the line.

A plus sign at the beginning or end of the format string causes the sign
of the number (plus or minus) to be printed before or after the number.
A comma to the left of the decimal point in the format string causes a
comma to be printed to the left of every third digit to the left of the
decimal point. A comma at the end of the format string is printed as
part of the string.

1. Fill in the blanks:

(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)
(viii)
(ix)
(x)

)

(id)
(ii)

(iv)

BASIC stands for :
BASIC was developed by John Kemeny and Thomas Kurtz in
at Dartmouth College, USA.
GW-BASIC shows a(n) message, when loaded.
In mode, the commands are executed as they are typed.
Every statement in a BASIC program is preceded by a.
A GW-BASIC program line can not have more than
characters.
There can be maximum lines in a GW-BASIC program.
The default extension of a GW-BASIC program is :
The words which have pre-defined meaning in a programming
language are called :
is an example of a non-executable statement.

Choose the correct answer:

GW-BASIC can operate in:

(a) One mode / (b) Two modes

(c) Three modes (d) Several modes

The maximum length of a variable name in GW-BASIC is:

(a) 31 (b) 32 (c) 40 (d) 45

If two or more statements are written on a line, they must be separated
by a:

(@) Colon (b) Semi colon () Comma (d) Hyphen

Which of the following is a type declaration character for integer
variables?

(a) ! (b) % () # $

38 NOT FOR SALE - PESRP

e ol

©

10.

(v) Which of the following operators has the highest precedence?

) ~ (b) * () + d =
(vi) A variable name must start with a(n):
(a) Alphabet (b) Underscore 4
(c) Digit (d) Alphabet or Underscore

(vii) Which of the following is a short key to run a program in GW-BASIC?
(a) F4 (b) F3 (c) F2 (d) F1

(viii) 'When a floating-point value is converted to an integer, the fractional
part:
(a) Truncated (b) Rounded off
(c) May be truncated or rounded off(d) Conversion is impossible

(ix) Which of the following statement temporarily stops the execution of a
program?
(a) BREAK (b) END (c) PAUSE (d) STOP

(x) Which of the following command continues the program whose
execution was terminated temporarily? ;
(a) CONTINUE (b) CONT
(c) RESTART : (d) START

Write T for True and F for False statements.

(i) QBASIC provides a menu-driven environment.

(ii) Every BASIC command is preceded by a line number.

(i) KILL command is used to terminate a running process on the system.

(iv)y DELETE command is used to delete a file.

(v) AUTO command is used to generate line numbers automatically.

(vi) 7 can be used as a replacement of PRINT command.

(vii) In GW-BASIC, F1 key is used to get help.

(viii) A program must be loaded before execution.

(ix) READ statement gets data through keyboard.

(x) The value of a constant can not be changed during program execution.

In how many modes, GW-BASIC can operate? Discuss briefly.

Describe rules of naming variable in GW-BASIC.

What are type declaration characters? Explain their uses with examples.

Briefly describe the uses of arithmetic, logical, and relational operators.

What does it mean by type conversion? Descnbe rules of type conversion in

BASIC.

Write a program to read ten values specified in DATA statemeri, and display

the sum of these values on the screen.

Answer the following short questions:

(i) Write the purpose of the function keys i.e., from F1 to F9 in GW-
BASIC.

(i) What does IDE stand for? Discuss features of GW-BASIC IDE.

39 NOT FOR SALE - PESRP

(iii) Explain the term ‘Loading a program’. Why should a program be
loaded before execution?

(iv) Differentiate BASIC commands and statements. :

(v} What is the difference between CLEAR command ahd CLS

command?

(vi) Write the purpose and syntax of the following commands:
(a) DELETE (b) KILL (c) FILES
(d) LIST (e) LOAD () SYSTEM
() NAME (h)y RENUM (i) RUN
() SAVE

(vii) Briefly describe the structure of a BASIC program.

(viii) Differentiate variable and constant.

(ix) Write a program that asks for the name, roll number, class, section,
and marks in different subjects of a student of class 10. The program
should calculate and display total marks and percentage of the student.
[Hint: use INPUT statement to get data from the user. Suppose total
marks are 850]

(x) Write a program to calculate the distance covered by a car moving at
an average speed of vms™ in time t. The program should input average
speed and time. [use INPUT statement to get the values for v and t.
You ha e developed the algorithm for the program in the exercise of
the previous chapter]

(xi) Give an example to explain the use of comma (;) and semi colon (;)
with PRINT statement. :

11. Write a program to calculate the volume of a cylinder. The program should
get the values for height of the cylinder and the radius of its base from the user

through INPUT statement.
[Hint: volume = 3.14 X radius X radius X height]

12. Write a program to compute the square of a given number. The program
should get the number from the user through INPUT statement.

13. Write a program to calculate and print the sum and average of three numbers
using LET statement.

1. ‘(i.). II‘Bégiﬁnérs All purpose Symbolic Instrt;ct'cior-l Code.
(i) 1963 . (iii) Ok . (iv) Direct (v) Line number :
(vi) 255 (vii) 65529 (viii) bas (ix) Keywords/Reserve words

(x) REM :
- @i b (i) c (iii) a (iv) b (v) a
(vi) a (vii) ¢ (vii) b (ix) d fx) b
3. W T (i) F (iii) F (iv) F v) T
(vi) T (vii) F (viit) T (ix) F x) T

40 NOT FOR SALE - PESRP

Chapter 3
CONTROL STRUCTURES

3.1 | INTRODUCTION

Control structures control the flow of execution of a program. There are three
types of control structures in BASIC; these are sequence, selection and loop. All
programs use some of these control structures to implement the program logic.

So far we have been using only the sequence structure. In sequence structure
instructions are executed according to the increasing order of their line numbers, So
the instructions at smaller line numbers are always executed first, then instructions at
greater line numbers. For example, the following program demonstrates the sequence
structure: '

10 REM This program does not transfer control to any statement

20 REM conditionally or unconditionally. The statements are executed
30 REM in the same sequence in which they are written.

40 R =105

50 AREA =3.14*R*R

60 PRINT “Area = “;, AREA

70 END

Output
346.185

In GW-BASIC, during the execution of a program the program control can be
transferred from one part of the program to another conditionally or unconditionally.
GW-BASIC provides statements for both types of transfer of control.

@ Inuamudiﬁmaltrmuferofmnlmlﬂwpmgramcmmnlswimheswaspeciﬁc
line by skipping one ore more lines without any condition.
= Incoudiﬁonalwmuferofconho!dwprogrmncomnlmimheswaspedﬁclhw
number by skipping one or more program lines depending on a certain condition.
3.2 UNCONDITIONAL TRANSFER OF CONTROL

The unconditional transfer of control causes a move of the control from one
part of the program to the other without any condition. In GW-BASIC, the GOTO
statement is used to implement unconditional transfer of control.

3.2.1 GOTO Statement
GOTO statement is used to unconditionally transfer control from a
program line to a specified line out of the normal program sequence.
Syntax: '
Line# GOTO line number

41 NOT FOR SALE - PESRP

Interpretation

The line number is a valid line number in the program. The
program control immediately jumps to the specified line number
without testing any condition. This causes interruption in the normal
program flow which is not considered a good practice in modern style
of programming. That's why; in most of the programming languages
the use of GOTO statement is discouraged. If there is an executable
statement at the line number specified in GOTO statement, then this
and the statements following it are executed. Otherwise, the program
execution starts from the first executable statement after this
statement.
Examples

Following examples demonstrate the use of GOTO statement:
10 READ A,BX,Y
20 GOTO 60
30 LET X = X*X+A
40 LETY =Y*Y +B
50 PRINTX, Y
60 REM Because of unconditional transfer of control, X and Y will
65 REM not be calculated in the above lines
70 LET X =A*X
80 LETY =B*Y
90 PRINTX,Y
100 DATA 6,3,4,5
110 END :

This shows after reading the values of A,B,X,Y, at line number
10, the control jumps to line number 60 where it encounters REM
(which a non-executable statement). The control then moves to line
number 70 where X and Y are calculated. Then at line number 90, the
values of X and Y are printed and the program ends. Statements at line
number 30, 40, and 50 are skipped without execution. If we want to
execute 30, 40, and 50 then our program needs few more jump
statements, i.e., GOTO statements. Consider the following program.
10 READA,BXY
20 GOTO60
30 LET X =X*X+A
40 LETY=Y*Y+B
50 PRINTX Y
55 GOTO 100 '
60 REM Because of unconditional transfer of control, X and Y
65 REM will not be calculated in the above lines

: - 42 NOT FOR SALE - PESRP

70 LET X =A*X
80 LET Y =B*Y
90 PRINT X, Y

95 GOTO30
100 DATA 6,3,4,5
110 END

Thus by introducing line number 55 and 95 all the statements
are executed but this makes the program more complex. So line
number 30 and 40 find the values of X =X*X +A,and Y =Y*Y+B
and line numbers 70 and so find values of X = A*X and Y =B*Y.

3.3 Conditional Transfer of Control

The conditional transfer of control causes the switching of the control from
one part of the program to the other depending on a certain condition. In GW-
BASIC, there are many statements that conditionally transfer the control from one
part of the program to the other. Here, we shall discuss them briefly.

3.3.1 ON...GOTO Statements
It is a multiple branching statement. Unlike GOTO statement which
allows only one transfer point, the ON...GOTO statement can have more
than one transfer points, thus providing multiple branching facility.
Syntax:
ON numeric variable or expression GOTO nl, n2, n3 ...
Interpretation
The expression is a valid BASIC expression and nl, n2, n3 ...
are the valid line numbers in the program where the control will be
transferred. The range of value of numeric variable or expression is O to
255. ,
If the value of numeric variable or expression is 1, the control will
be transferred to line number nl, if the value is 2 then the control will
be transferred to line number n2, if value is 3 then the control will be
transferred to line number n3 and so on. If the value is less or more
than the count of line numbers following the GOTO statement then
an "OUT OF RANGE" error message will be displayed.
Example: '
Let us consider a program to add, subtract, divide and multiply
two numbers A and B.
5 INPUT A,B
10 INPUT " 1-ADD, 2-SUB, 3-MUL, 4-DIV"; N
20 ONN GOTO 30, 40, 50, 60
30 PRINT A+B:END
40 PRINT A-B : END

43 NOT FOR SALE - PESRP

50 PRINT A*B: END
60 PRINT A/B : END

When line number 5 is executed, a question mark (?) appears
on the screen. This is in fact the prompt where values for A and B are
typed. Line number 10 displays the following message on the screen:
1-ADD, 2-SUB, 3-MUL, 4-DIV? '

If we enter 1 then N takes the value of 1. If we enter 2 or 3 or
4, N will take the same value accordingly. If the value of N is
1 then control is transferred to line number 30,
2 then control is transferred to line number 40,
3 then control is transferred to line number 50,
4 then control is transferred to line number 60

On execution of line number 30 addition of A and B will be
displayed on the screen and program will come to an end. Similarly, in
line number 40, 50, 60 printing of the result of subtraction,
multiplication and division will be displayed respectively.

There can be many ways to write a program. Let us write the
same program (in the above example) in another way:
5 INPUT A, B
10 INPUT " 1-ADD, 2-SUB, 3-MUL, 4-DIV"; N
20 ONNGOTO 30, 40, 50, 60
30 PRINTA+B:GOTO70
40 PRINT A-B : GOTO 70
50 PRINT A*B : GOTO 70
60 PRINT A/B
70 END

3.3.2 ON ERROR GOTO Statement
This command enables error trapping feature of GWBASIC and
specify the first line of error handling routine.
Syntax:
ON ERROR GOTO line number
Interpretation
line number is a valid line number in the program. Error
handlers in GWBASIC are ‘turned on’ with an ON ERROR GOTO
statement. It is often used at the beginning of the program so that
errors occurred anywhere in the program can be trapped. When an
error occurs during the program execution, the control immediately
transfers to the specified line number. This line number specifies the
beginning of a user-defined error handling routine which processes the
error accordingly. The errors can be handled in direct as well as
indirect mode.

44 NOT FOR SALE - PESRP

In GW-BASIC, each possible error has been assigned a unique
code. When an error occurs its code is assigned to a special variable,
named ERR and the line number where the error was encountered is
assigned to another special variable, named ERL. The ERR and ERL
are reserved words. :

GW-BASIC needs to know when it has finished handling an
error. We can exit from an error handling routine using the RESUME,
RESUME NEXT, RESUME line number or END statement. The
RESUME statement returns the execution to the statement that
caused the error and tries to execute it again. Hence we should only
use this statement if the program or the user were somehow able to fix
the problem immediately. RESUME NEXT resumes the execution
from the statement immediately following the statement that caused
error. And RESUME line number resumes the execution at the
specified line number. '

Example
10 ON ERROR GOTO 70
20 INPUT “Enter first No. *, n1%

30 INPUT “Enter second No. “, n2%
40 1% =nl%*n2%

50 PRINT “Result = “; 1%

60 END

70 PRINT “Error Code = “; ERR

80 PRINT “Error is on line no. “; ERL
9 END

RUN

Enter first No. 400

Enter second No. 450

Error Code = 6

Error is on line no.40

Here, r is an integer variable and the result of 400 * 450 can _
not be stored in it. Hence an overflow error occurs with code number
6, which is assigned to the variable ERR.

3.4 SELECTION STRUCTURE
A selection structure chooses which alternative program statement(s) to

execute. In GW-BASIC, We have IF.. .THEN, and IF...THEN...ELSE statements to
implement selection structure.

3.4.1 The IF... THEN Statement
The IF...THEN is a decision making statement, depending upon the
decision, it can change the order of program execution. It is used to select a

45 NOT FOR SALE - PESRP

path flow in a program based on a condition. A condition is an expression that
either evaluates to true (usually represented by 1) or false (represented by 0).

Syntax:
o IF expression THEN Statement
® IF expression THEN line number TRUE

If the expression is true then

" either the statement at the specified line

number or the statement following the
THEN keyword is executed.

FALSE

Fig. 3.1: Flowchart of IF.. .THEN statement
Example:

Write a program to find out the train fare depending on the
Kilometers traveled. The minimum fare charged is Rs. 6.00. This
minimum fare remains valid for 5 km traveling distance or less. After 5
km, 0.75 rupees per kilometer are added to the fare.

10 INPUT "KILOMETER", K :

20 IFK < = 5 THEN PRINT "RS.6” : END

30 CHARGE! = 6 + (K-5) *.75! '

40 PRINT CHARGE!

50 END :

Here in line number 20, if K is less than or equal to 2 then it
will print Rs. 6 and the program will END, in continuation to the line
number 20 next statement is END. Otherwise if K is not less than or
equal to 2 then line number 30,40 and then 50 will be executed.

3.3.2 The IF...THEN...ELSE Statement

The keyword ELSE is used to specify two different alternatives with IF
statement. Based on a condition, one of the two alternatives is executed.
Syntax:

IF (expression) THEN IF (expression) THEN line number
Statements (true task)
ELSE ELSE
Statements (false task) Statements (false task)

Fig. 3.2: Flowchart of IF... THEN.. .ELSE structure -

The IF..THEN..ELSE statement is a decision making
statement as it decides the path of the program. It helps in making

46 NOT FOR SALE - PESRP

comparisons and testing whether a condition is true or not. IF is always
followed by a valid BASIC condition or expression. If the condition is
found true then the line number or Instruction after THEN is
performed otherwise line number or instruction after ELSE is
performed.

Example: Ages of different candidates appearing before a selection
board of PIA are accepted through the keyboard. If the age is below 17
the candidate is not eligible for the announced post, otherwise he can
appear for test and interview. We are asked to write a program for this
problem.

10 INPUT “AGE”; A

20 IF A>= 17 THEN 30 ELSE 50

30 PRINT “Candidate is eligible”

40 GO TO60

50 PRINT “Candidate is not eligible”

60 INPUT “Would you like to input again (Y/N)”; Y$

70 IFY$ = “Y” THEN 10

80 END

The line number 10 will display the message AGE? on screen.
The user enters the age (say 18). Line number 20 tests whether A is
greater than or equal to 17 or not. Since A is equal to 18 (which is
greater than 17), statement at line number 30 is executed. Line
number 30 prints “Candidate is eligible”; line number 40 causes the
control to pass to line number 60. Line number 60 causes the message
“Would you like to input again (Y/N)?” We input either Y or N. In line
number 70 if input is Y then control goes to line number 10, otherwise
goes to the line number 80 i.e., END.

Now if at line number 60 we enter Y then control will pass
again to line number 10, we give another age, say 13. In line number
20 value of A (i.e., 13) is not greater than 17, therefore ELSE part will
be executed and control will go to line number 50. Line number 50 will
print “Candidate is not eligible”. Then line number 60 as before will be
executed. In this way a large number of candidates’ age can be tested.
When we want to stop we should input N in line 60 for Y$.

Use of Logical Operators

We have studied the three logical operators i.e., AND, OR,

and NOT. These operators play an important role in constructing
‘conditions to be used with IF statement. Until now, we have been
using simple conditions with IF statement. In this section, we shall
observe how complex program logic can be simplified using logical
operators.

47 NOT FOR SALE - PESRP

‘Example: Let us consider a program to find the smallest of three given
numbers. :
10 INPUT A,B,C
20 IF A<B AND A<C THEN 50 ELSE 30
30 IF B<A AND B<C THEN 60 ELSE 40
40 IFC<A AND C<BTHEN 70
50 PRINT "A Is The Smallest Number": GO TO 80
60 PRINT "B Is The Smallest Number": GO TO 80
70 PRINT "C Is The Smallest Number"
80 INPUT "Would you like to input again (Y/N)"; Y$
90 IF Y$ = "Y" THEN 10
100 ©° END
There are many such situations where the use of logical
operators would simplify the program logic. We just have to
concentrate on the underlying problem. In this book, we shall see more
examples of using logical operators in next chapters.

3.5 LOOPS

We often face problems whose solution may require executing a set of
statements repeatedly. In such situations, we need a structure that would allow
repeating a set of statements up to fixed number of times or until a certain criterion is
satisfied. Loop structure fulfills this basic requirement.

3.5.1 FOR...NEXT Loop

When it is known in advance how many times the loop must be
repeated the FOR...NEXT loop is the most effective option. FOR loop is used
to repead a set of statements to a specific number of times.

Syntax:
FOR variable = x TO y [STEP 2]

NEXT [variable]

Interpretation -

The numeric variable name following FOR is called the loop
control variable or loop variable, x and y are numeric constants where x
gives the initial or starting value of the loop and y gives the final value,
7 followed by keyboard STEP gives the increment in x till y is reached.
The increment can be negative also.

x, y and z can be numeric variable names. In such cases their
numeric values should be assigned before the starting of the loop, i.e.,
before coming to FOR statement. The keyword NEXT should have the
same control variable as followed by the keyword FOR.

48 NOT FOR SALE - PESRP

3.5.2

Example: Let us consider a Program that prints the sum of the following
series: (2at 3

24,68, Lond00: nion

10 N=0 o prsse

20 FORI=2TO 100 STEP2

30 N=N+I

40 NEXTI

50 PRINT"SUM OF SERIES = "; N
60 END

WHILE...WEND Loop

The While loop keeps repeating an action until an associated

condition becomes false. This is useful where the programmer does not know
in advance how many times the loop will be executed.

Syntax:
WHILE expression

*

iloop statements)

WEND
Interpretation

The expression in the While loop controls the loop repetition.
The statements, which are executed when the given condition is true,
form the body of the loop. The body of the loop is executed until the
condition is true. As soon as it becomes false, the loop terminates
immediately and the program control transfers to the statement next
to the WEND statement.

It must be noted that the loop control variable in WHIE loop is
always initialized outside the body of the loop and is incrementd or
decremented, according to the program logic, inside the body of the
loop. Whereas in FOR loop, the loop control variable is initialized and
incremented or decremented within the FOR statement.

Example: Write a program to print digits from 1 to 10

10 N=1i

20 WHILEN <= 10
30 PRINT N

40 N =N+1

50 WEND

60 END

49 NOT FOR SALE - PESRP

4.5.3 Nested Loop

Inside a loop (FOR or WHILE) there can be one or more loops (FOR

or WHILE), such type of structure is known as nested loop.

Example: Suppose we want to print the output in the following format:
M &5 omE s s
ol oo
o
%
e

10 FORY =5 TO 1 STEP-1
20 FORX=1TOY

30 PRINT "*";
40 NEXTX
50 PRINT

60 NEXTY
70 END

This program contains two loops: the outer loop is from the line
number 10 to 60 and inner loop from line numbers 20 to 40. In line
number 10, initially Y is assigned a value 5. Since the value of Y is
greater than 1, control is transferred to line number 20, which causes
the inner loop to execute 5 times resulting into printing of 5 stars (¥)
in one row. The statement at line number 50 will transfer the printer
control to the beginning of the next line. When line 60 is encountered,
the control goes back to line number 10. Now the value of Y becomes
4 and once again the inner loop is executed 4 times resulting in
printing of 4 (*) stars in second row. This process will continue till the
value of Y becomes 1. After that it will come to an end.

1, Fillin teblenks

(i)
(ii)
(i)
(iv)
(v)
(vi)
(vii)

(vii)

T

It is recommended to avoid the use of statement.

GOTO statement provides transfer point.

The FOR...NEXT loop transfers control based on a :
Maximum transfer points can be specified with
ON...GOTO statement.

ON ERROR GOTO statement error trapping features of
GW-BASIC.

In GW-BASIC, every error is assigned a code.

A special variable named is assigned an error code on
occurrence of an error in BASIC.

A special variable named is assigned the line number

where an error occurs in a BASIC program.
50 NOT FOR SALE - PESRP

3.

(ix)
(x)

When an error occurs in a BASIC program, the control may transfer to
a(n) routine.
A structure chooses the aiternative program
statement(s) to execute.

Choose the correct answer.

()

(ii)

(iii)

(iv)

(v)

Which of the following is not a logical operator:
(a) AND (b) OR (c) NEITHER (d) NOT

Which of the following can not be used to exit from an error handling
routine:

_ (@) RESUME (b) RESUME NEXT (c) END (d) STOP

Which one is a multiple branching statement?
(a) IF...ELSE (b) GOTO
(c) ON. -.GOTO (d) ON ERROR GOTO line_number

If the integer value of the numeric expression following the keyword
ON, in ON...GOTO statement, is greater than 255, which type of

error occurs?

(a) Syntax error (b) Logical error

(c) Runtime error (d) Its not an error
FOR...NEXT is used to implement:

(a) Iteration (b) Selection

(c) Sequence (d) All of the above

Write T for True and F for False statements.

(i)
(ii)
(i)
(iv)
v)
(vi)
(vii)
(viii)
(ix)
(x)

The control can exit from an error handling routine using a RESUME
statement.

There is no difference between END and STOP statements.

A false condition evaluates to NULL.

A WHILE...WEND loop executes as long as the specified condition is
true.

In WHILE...WEND loop, the loop control variable is always updated
outside the body of the loop.

Specifying an IF statement within the body of a loop is referred to as a
nested loop.

The GOTO statement increases the complexity of the program.

A condition specified in IF statement may neither be true nor false.
There is no need to update the loop control variable in FOR...NEXT
loop, the loop itself manage it. _
Specifying an IF statement within the block of another IF statement
causes a syntax error.

51 NOT FOR SALE - PESRP

10.
11.

12.
13.

14.

Define control structure. How many control structures are available in
BASIC, discuss briefly.

Define nested loop. Write the syntax of FOR...NEXT and WHILE...WEND
loop and explain with examples.

What does it mean by transfer of control? Briefly describe conditional and
unconditional transfer of control in BASIC.

Differentiate WHILE...WEND and FOR...NEXT loop. Which one is better
in a situation where you don’t know the number of iteration prior to the
execution of the loop? '

Write a program to calculate the area of a triangle. The program should get
the values for base and altitude of the triangle from the user, and display the
result. [Hint: area = % X base X altitude]

Write a program to calculate area and circumference of a circle. The program
should get the radius of the circle from the user and display result.

[Hint: area = 3.14 X radius X radius, and circumference = 2 X 3.14 X
radius]

Write a program to print first ten odd numbers using WHILE...WEND loop.
Write a program to print the sum of squares of first five even numbers using
FOR...NEXT loop.

Wirite a program to find the larger of two numbers. The program should get
the numbers from the user.

Write a program to print the table of a given number. The program should get
the number from the user. _ :
Write a program that should accept obtained marks of a student in an
examination. It should then calculate the percentage and assign a grade to the
student. The grade should be assigned according to the following criteria.

Percentage Grade
>= 80 Al
>= 70, but < 80 A
>= 60, but < 70 B
>= 50, but < 60 &
>= 40, but < 50 D
< 40 F

(i) GOTO (ii) One (iii) Condition (iv) 255 (v) Enables
(vi) Unique (vii) ERR (vii)) ERL (ix) Error handling (x) Selection

(i) c (i) d 3. i) c (iv) ¢ (v) a
)T (i) F (iii) F (iv) T (v) F
(vi) F (vii) T (viii) F (ix) T (x) F

52 NOT FOR SALE - PESRP

Chapter 4 i
ARRAYS

4.1 INTRODUCTION

In previous chapter of this book, we have written simple programs in which
less number of variables has been used as numeric or string variables. If we have to use
hundred or thousand different variables in a program, it will become difficult to
handle them. For example a program has to store names of hundred students in a
computer. It needs hundred different variable names. So an array can solve these type
of problems by defining names instead of contagion memory location defining several
names for string different values. Arrays are used to process a large amount of data of
same type.

4.1.1 What is an Array?

An array is a collection of variables that can store data of same type.
Each memory location holds a single value which is called an element of an
array. The array is represented in the computer's memory by a set of
consecutive memory locations. The memory locations are referred to as
elements of the array. Each array is given a name and the elements of the array
are accessed with reference to their position or location number. This position
number is called index or subscript. The subscript or index value is written in
parentheses with the name of array. The first element of the array has an
index value of O unless specified otherwise, and the index is incremented for
each next element.

General format Syntax: array name (size of array)

An array is referred by its name followed by a subscript enclosed in
parentheses. Where array name (array variable) is the variable name of the
array, size of array (subscript/index value) is specified number of data items
that it will contain. Each element is given a unique storage location in the
array, and a subscript or index value is used to identify the position of a
particular element. The subscript, which may be an integral exprassion or
simple variable, is enclosed in parentheses after the array name. We have only
dealt with unsubscripted variables, so for which are simple vaiiables that are
only capable of storing one value. An array is called a subscripted variable
because when we need to access a certain element; we must use a subscript to
point to that element so we can differentiate it from the rest. All array
elements in an array have the same variable name, which is also the name of
the entire array. An array variable can be numeric or string. For example of
string N$ is consisting of five elements N$(0), N$(1),....N$(4), it can be
represented as below:

53 NOT FOR SALE - PESRP

N$(0) Saleem
N$(1) Asma
N$(2) Majeed
N$(3) Bushra
N$(4) Mehmood

whe e 0, 1, 24 are the subscripts used to identify the array location,
so that N$(0Q), N$(1), ...N$(4), are addresses in the memory where the values
will be stored. Values can be assigned to the subscripted variables by LET
statement, READ ...DATA statement or INPUT statement. The “size of
subscript /index value” can be a variable or number or a numeric expression.

4.1.2 Filling and Printing of an Array

Data (String and numbers) is entered in an array by using LET, READ
or INPUT statements. Data may be assigned to the subscripted variables in an
array. The following program is to store the string values. It is illustrated by
both READ... DATA statement and INPUT statement.

Example 1:
10 FORK=1TO 4
20 READ N$(K)
30 PRINT N$(K)
40 NEXT K
50 DATA Shaista, Mehmood, Saleem, Hina
€d END
RUN
Shaista,
Mehmood
Saleem
Hina ;

When this program is RUN, the subscripted variable N$(K)
automatically represents each of four elements in the array, the first
time through the loop when K=1 the string Shaista is assigned to
N$(1) and so on.

Example 2:
10 FORK=1TO4
20 INPUT “Enter the name of student”, N$(K)
30 NEXTK
40 FORK=1TO 4
50 PRINT N$(K)
60 NEXT K
70 END

Note: index value can
be given a non- zero
integral value but by
default it is zero.

54 NOT FOR SALE - PESRP

RUN

Enter the name of student Shaista
Enter the name of student Mehmood
Enter the name of student Saleem
Enter the name of student Hina

" Shaista,
Mehmood
Saleem
Hina

4.1.3 DIM Statement

By default GW-Basic provides an array for string 10 elements, trom

subscripts 0 to 9.

We have to use the DIM statement to specify a maximura subscrip:

different. If subscript greater than the maximum specified is used, a “Subscrip:
out of range” error occurs. The maximum number of dimensions for an arrav is

255.

Syntax: :
Line No. DIM subscripted variable1, subscripted variable2...

The kevword DIM is a shortened form of the word dimension.
There is no DIM statement in the above programs because these
programs handle less than 11 values.

DIM is used to create memory variable. It specifies the
maximum value for array variable subscript and allocates storage
accordingly. When subscript variables are used in a program, certain
information must be considered before applying.

e Name of subscript variable

e Size of subscript variable

e We can define more than one array variable in one DiM
. statement(as mentioned in above syntax)

e Subscripted variable may be string or numeric.

The following problem can find the largest number from the list
of numbers, which is given by the user.

Example 3:

10 DIM NUM(100)

20 INPUT “How many numbers you want to enter; Max: 10C:
" LIMIT

30 FORI= 1TO LIMIT

40 INPUT “Enter any number”, NUM(I)

50 NEXTI

60 LARGE = NUM(I)

55 NOT FOR SALE - PESRP

4.2

70 FORI=1TO LIMIT :
80 IF LARGE < NUM(I) THEN LARGE = NUM(I)

90 NEXTI
100 PRINT “Largest number of list is ”; LARGE
110 END
R''™N
How many numbers you want to enter; Max: 100: 14
Enter any number 56
Enter any number 88
Enter any number 2
Enter any number 69
Enter any number 5
Enter any number 14
Enter any number 34
Enter any number 55
Enter any number 76
Enter any number 54
Enter any number 35
Enter any number 29
Ento: any number 81
Enter any number 1
Largest number of listis 88
Types of Arra

Array can be divided in two major categories.
e One-dimensional array
e Two-dimensional array

4.2.1 One-Dimensional Array

One-dimensional array is also known as linear array or vector array. It
consists of only one row or column. It is also called 1-D array. For example, a
class of 5 students has taken marks in a subject and wants to find the average
of marks of a subject. The following problem can find the average of marks in
a subject for the students of a class. The general syntax to declare One-
Dimensional array is:
Line No. DIM array name/ variable (n)

Where array name (variable) represents the name of array variable, n
represents the size of elements. -

Example 4:
10 FORI=1TO5
20 READ MARK (I)
30 SUM=SUM + MARK(I)

56 NOT FOR SALE - PESRP

40 NEXT I

50 AVG =SUM /5

60 FOR I=1TO5

70 PRINT MARK(I)

80 NEXTI

90 PRINT “SUM OF MARKS OF A CLASS I N A SUBJECT =
”; SUM

100 PRINT “AVERAGE OF MARKS = "; AVG

110 DATA 88, 66,49,55,78

120 END

RUN

88

66

49

55

78

SUM OF MARKS OF A CLASS I N A SUBJECT = 336

AVERAGE OF MARKS = 67.2

4.2.3 Two-Dimensional Array

The two dimensional array consists of rows and columns. It is also
known as table or matrix. Two-Dimensional array is also defined as: array of
One-Dimensional arrays. The element of Two-Dimensional array is referenced
by two index values. One index value represents the row and the second
represents the column. An array that requires two subscripts to identify a
particular element is also known as the double-subscripted array. For example
if A is a two-dimensional array having 4 rows and 3 columns, its first element
is A (0,0) and the last element is A(3,2).
The general syntax to declare Two-Dimensional array is:

Line No DIM array variable (row, col)

where, array variable represents the name of the two-dimensional
array. “row” represents the total number of rows of table. It is an unsigned
number. “col” represents the total number of columns of the table. For
example, to declare A having 4 rows and 3 columns, the declaration statement
is written as: A(3,2) the total number of elements of the above table “A” are
4x3=12.

RC| 0 1 2
0 | A0 | A1) [A(0,2)
1 | A(LO) | A(L1) | A(1,2)
2_|AQRO) |A@2,1) | A(2,2)
3 |AG0) [AG,L) [ABG2)

57 NOT FOR SALE - PESRP

The above table has four rows and three columns. It can be read and
processed in a two — dimensional array.

Filling and Printing of Two —Dimensional Arrays

Data is entered into individual elements of a two-dimensional array.
To enter data, the element is referenced by its index or subscripr value.
Similarly, data is retrieved from an array from individual elements of the array.
Usually, nested loops are used to access elements of the two-dimensional
array. The following example inputs data into two array and then prints out
the sum of array on the computer screen in tabular form.

Nested loop has been used to enter data into the elements of the table.
The outer loop has been used to change the index values of rows and inner
loop has been used to change the index values of columns. Similar method is
used to print out data from the elements of the array.

 Example 6:
10 DIM A(2,2), B(2,2), Z(2,2)
20 FORR = 1TO2 '
30 FORC= 1TO2
40 READ A(R,C), B(R,C)
50 Z(R,C) = A(RC) + B(R,C)
60 PRINT Z(R,0),

70 NEXTC
80 PRINT
90 NEXTR

100 DATA 8,4,3,5
110 DATA 64,55
120 END

RUN

12 8

10 10

Array Manipulation

There are different operations can be performed by using array, like
searching a particular element in an array, matching elements from two
different arrays, sorting array, finding a largest and smallest number from an
array and rearranging the array.

58 NOT FOR SALE - PESRP

e

s Fovt O T i T

1. . Fill in the Blanks:

(i) Two-dimensional array is also known as

(i) Rearranging the list of an array is called ;

(iii) The DIM statement is an optional if the number of memory location is less
then locations.

(iv) An array is a collection of variables.

(v) In two-dimensional array the subscripts are separated by

(vi) The minimum value for a subscript is always assumed to be

(vii) Z(2,2) is an example of dimension array.
(viii) A string array is declared by using its name, proceeded by sign. -
(ix) A collection of subscripted variables with same valuable name is
(x) The values given in the parenthesis in an array are called

2. Choose the correct answer.
(i) There are types of array.

(a) 1 (b) 2 (c) 3 d 4
(i) The statement x(30) will reserve memory locations:
(a) 29 (b) 30 (c) 31 (d) None of the above

(iii) In two dimension array, when dimension is not mentioned, the array
should not have more than elements:

(a)10 (b)100 (c)110 (d)121
(iv) Which of the following statement is used to find the largest value from an
array!
(a) INPUT ~ (b) READ....DATA

(c) ON-ERROR - GOTO (d) None of them
(v) Which of the following is not a valid subscript?

(@A NUM(10) () AQ) (©)B@ (@) A(-2)
(vi) An element of an array is mentioned by its:

(@) Subscript (b) array (c) object (d) name of element
(vi) Dimension statement uses the keyword

(a) DMS (b) DS (c) DIM (d) DM
(viii) Maximum number of elements per dimension is:
(a) 10 -(b) 255 (c) 32767 (d) None of them

(ix) The doubly subscripted variahle p(3.2) specifies the data element present in
(a) Column 3 and Row 2 (b) Column 3 and Column 2
(c) Column 2 and Row 3 (d) Row 3 and Row 2

(x) The statement DIM C(30,50) would reserves.
(a) 80 Locations (b) 1500 Locations
(c) 1800 Locations (d) 150 Locations

59 NOT FOR SALE - PESRP

3. Write T for True and F for False statements:
(i) Anarray is a collection of subscripted variables with the different variable names.
(i) An array is a set of unlike variables.
(iii) Items in a list are represented by a single variable name as array.
(iv) In programming, lists and table are called array.
(v) 12 memory spaces are reserved for the statement DIM P(4,3).
(vi) DIM is a reserved word.
(vii) One demission array is also known as table.
(viii) Once an array is dimensioned, cannot be re-dimensioned with in the program.
(ix) The biggest number that BASIC automatically assigns as a subscript is 100.
(x) Two dimensional arrays are named the same way as one dimensional arrays.
4 What is meant by DIM statement!? '
5 Describe the use of subscript variable in array.
6. How would you Fill and Print the array?
7. What is meant by Manipulation of array?
8 Differentiate between 1-D-Array and 2-D-Array,
9. Describe about printing two dimensional array with the help of an example.
10. Write a program in BASIC to enter integer type data into an array and then to
print the values in reverse order.
11. Differentiate between simple and subscript variable.
12. Draw a flowchart for the Q.NO. 16 program.
13. Write an algorithm to sum array A elements and array B elements.
14. Write a program to print a list of odd numbers from the given numbers.
6,42, 4,171,32,9, 21,122, 8,45, 15, 46
15. Write a program that read an array N with 20 numbers and find the
product of the elements of array.
16. Write a program that read an array Z having 12 numbers given by user
then print the sum and average of all array elements.
17. Find out the errors in the following program segments if any.

(a) 10 DIM N$(10) () 10 FOR]=KTO15
20 FORK=4TO 15 20 K() =]
30 INPUT N$ 30 PRINT K(J)
40 NEXTI ; 40 NEXT]

18. Write a program to sort the list of 20 names in descending order.

1. (i) Table (i) Sorting (i) 11 (iv) Subscript (v) Comma
(vi) 0 (vii) Tow (viii) $ (ix) Array (x) Subscripts
2. @i b (i) c (ii)) a (iv) d (v) d
(vi) a (vii) ¢ (viii) b (ix) ¢ (x) b
3. @ F (i) F @) T (iv) T (v) F
(vi) T (vii) F (viii) F (ix) F x) T

60 NOT FOR SALE - PESRP

Chapter 5
SUB-PROGRAM AND FILE HANDLING

5.1 INTRODUCTION

As a program gets longer, it becomes more difficult to handle most computer
languages excluding GW-Basic features that facilitates such situation. A separate
large program is divided into smaller, manageable parts called subprogram or modules.
It is designed to perform a specific task and return a value. In BASIC, there are two
types of subprogram: standard or "built-in" and user-defined. Intrinsic Function or
built-in functions are provided by the BASIC, and allows the programmer to use them
so that s(he) does not have to write code to handle certain situations. A user-defined
function is written and specified by the programmer to accomplish a particular task.
The function will always return a value to the "calling" module. Let us begin with the
standard functions. '

As previously mentioned, standard functions are provided by BASIC and
simply have to be "called” upon for use. The called function will have a particular
name followed by parentheses. An argument is "passed" to the function by inserting a
constant, variable, expression, or another function inside the parentheses. The
argument is what the function will be operating on. A function if used has highest
priority in a statement so therefore it will be evaluated before anything else in the
statement.

5.1.1. Built-in-Function

These functions perform operations on their operands and return
values. Basically these are programs that have been written by developers of
language and have been incorporated in it. These functions are known as
built in functions or standard functions or Library functions or Intrinsic
functions. BASIC has many Pre-defined functions built into the language that
can be used by “calling” them. Basic library functions are divided into two
general categories, numeric functions and String.

a) Numeric Functions

_These functions are applicable on numeric values only, and
produce the numeric results. There are too many functions available,
but here most important functions will be discussed. -

3. ABS FUNCTION

PURPOSE: The purpose of ABS function is to return
the absolute value of the expression x i.e., the value
without any sign.

FORMAT: ABS (x)

61 NOT FOR SALE - PESRP

" Example:
10 PRINT ABS (-15)
20 PRINT ABS (-12.45)
RUN
15
12.45

2+ INT FUNCTION
PURPOSE: Returns the lowest integer less then or
equal to x. In case of whole number it returns the same
number.
FORMAT: INT (x)
Example:
10 J= INT (3.9999)
20 PRINT]
RUN
3

3 SQR FUNCTION
PURPOSE: Returns the square root of a positive
number x. x must be greater than or equal to 0.
FORMAT: SQR (x), when x=>0

Examples:
10 FOR X=10TO 25 STEP 5
20 PRINT X, SQR(X)
30 NEXT X
RUN
10 3.162278
15 3.872984
20 4.472136
258

4. SIN FUNCTION
PURPOSE: The purpose of SIN function is to find the
trigonometric ratio called sine of an angle x expressed
in radians. The following formula is used for converting
angle in radians.
SIN(x * = / 180)
SIN(x) is calculated in single precision
FORMAT: SIN (x)
Example:
10 PI= 3.142857
20 PRINT SIN (PI * 30/180)

62 NOT FOR SALE - PESRP

RUN
0.9999
Similarly there are other trigonometric functions given in the

following list

Function BASIC equivalent
Cosine COS(x)
Secant SEC(x)
Cosecant COSEC(x)
Tangent TAN(x)
Cotangent | COT(x)

5. FIX FUNCTION

PURPOSE: The purpose of this function is to obtain an
integer value by simply dropping of the decimal part. Fix
function dose not round the number.

FORMAT: FIX(x)

Example:

PRINT FIX (-7.09)
RUN
1

TAB FUNCTION

PURPOSE: To print at certain column position x on
the screen. If the current print position is already
beyond space x, TAB goes to given position on the next
line. Space 0 is the leftmost position. The rightmost
position is the screen width. X must be within the range
of 1 to 255.

FORMAT: TAB (x)

Example:

PRINT “PAKISTAN” TAB(2) “IS MY” TAB(4)
“COUNTRY”

RUN |

PAKISTAN IS MY COUNTRY

RND FUNCTION

PURPOSE: To return a random number between 0
and 1.

FORMAT: RND [(x)]

63 NOT FOR SALE - PESRP

The same sequence of random number is generated
each time the problem is run unless the random number
generator is reseeded. If x is equal to zero, then the last
number is repeated. To get a random number within the range
of zero through n, use the following formula:

INT (RND*(n+1))

Example:
10 FORI=1to5
20 PRINT INT (RND *101),
30 Nextl
40 END
RUN
53 30 31 51 5

8. LOG FUNCTION
PURPOSE: To return a natural logarithm (LOG in
BASIC is a logarithm to the base e = 2.718282).
FORMAT: LOG(x)

Example:
PRINT LOG (10)
Run
2.302585

9. SPC FUNCTION
PURPOSE: Skips x spaces in a PRINT statement. SPC
may only be used with PRINT and LPRINT statement. '
The argument n must be in the range 0 to 255. If x is
greater than the defined width of the printer or the
screen, the value used will be n MOD width.
FORMAT: SPC (x) '

Example:
PRINT "OVER" SPC(15) "THERE"
123456789012345
OVER THERE

10. BEEP Function
PURPOSE : To sound the speaker at 800 Hz (800

cycles per second) for one-quarter of a second

FORMAT: BEEP

Example:
BEEP (type BEEP at command level)

64 NOT FOR SALE - PESRP

11.

DATES$ Function
This statement is used to set or retrieve the current

date. Ok

PRINT DATES
FORMAT: 11-14-2005

DATES$ = v$ Ok
OR _
v = DATE$
where, v$ is a valid
string literal or
variable.

DATES = “12-03-20

Fig. 5.1: Example of DATES$ function

v$ can be any of the following formats when assigning
the date: '

mm-dd-yy

mm/dd/yy

mm-dd-yyyy

mm/dd/yyyy

Examples:

Figure 5.1 shows the use of DATE$ statement

b). SRTING FUNCTIONS:
String functions are used to process character strings and
produce the numeric values or string values.

LEN FUNCTION

PURPOSE: To return the number of characters in
string x$. The x$ is any string expression. Nonprinting
characters and blanks are counted in the number of
characters. :

FORMAT: LEN(x$)

Example:

10 A$ = :"PAKISTAN”
20 PRINT LEN (A$)

Run
8

VAL FUNCTION

PURPOSE: To return the numerical value of string x$.
The VAL function also strips leading blanks, tabs and
line feeds from the argument string. If the first character
of x$ is not numeric, the VAL(x$) function will return
Z€r0.

FORMAT: VAL(x$)

65 NOT FOR SALE - PESRP

Example:

10 PRINT VAL (“78, city Lahore”)
RUN
78
In this example VAL is used to extract the number from
an address.

8 MID$ FUNCTION
PURPOSE: To return the requested part from of a
given string. n is an integer expression in the range 1 to
255, m is an integer expression in the range 0 to 255.
The function returns a string of length m characters
from X$ beginning with the nth characters. If m is
omitted or if fewer than m characters are to the right of
n, all right most characters beginning with n function
characters are returned. If m is equal to O, or if n is
greater than LEN(x$), then MID$ returns as null string.
FORMAT: V$ = MID$(x$,n[,m])
Example:
10 A$ = “WE LOVE PAKISTAN"
PRINT MID$(AS$, 4, 4)
PRINT MID$(A$, 9, 8)
RUN
LOVE
PAKISTAN
4. SPACE$ FUNCTION
Purpose: To return a string of x spaces. x is rounded to
an integer and must be within the range of 0 to 255.
FORMAT: SPACES$ (x)
Examples:

10 FORN=1TO5
20 X$=SPACE$(N)
30 PRINT X$; N
40 NEXT N
RUN

1

2

3
4
5
Line 20 adds one space for each iteration.

66 NOT FOR SALE - PESRP

5. RIGHT$ FUNCTION
PURPOSE: To return the specified right most
characters of strings x$.
FORMAT: RIGHTS$ (x$, i)
If i is equal to or greater than LEN(x$), RIGHT$
returns x$. If i equals zero, the null string(length zero)
is returned.
Example:
10 A$="Disk Operator”
20 PRINT RIGHT$(AS$,5)
RUN

rator

6. LEFT$ FUNCTION
PURPOSE: To return a string that comprises the
leftmost n characters of x$.
FORMAT: LEFT$ (x$, n) :
n must be with in the range of 0 to 255. If n is greater
than LEN$(x$), the entire (x$) is returned. If n equals
zero, the null string (length zero) is returned.
Example:
10 A$="Disk Operator”
20 PRINT LEFT$(A$,4)
RUN
Disk -
7. CHR$ FUNCTION
PURPOSE: To‘converts an ASCII Code value to its
equivalent character. The Function CHR serves the
opposite to ASC and is useful in getting output ASCII
control characters. The PRINT statement is used to
print these characters.

FORMAT: CHR$ (n)
Example: :
10 PRINT CHR$(65)
RUN

A ;
5.1.2. User-Defined Functions -

A user-defined function is completely defined and customized by the
programmer to solve some problems. Functions that we write are called user-
define functions. User-defined functions return a single value and are generally
used to perform an operation that will be needed numerous of times in a
program. In BASIC, user-defined functions are referred to as procedures;
similar to SUB procedures except function procedures return one value. The

. 67 NOT FOR SALE - PESRP

user can define the function with DEF FN Statement. These functions are
defined only for the life of a given program and are not part of the BASIC
language. ;

A single line function can be defined by DEF FN statement that is
executing same codes more than once in the different place of program.
Syntax: Line No DEF FN name [arguments] expression
Where “name” must be a valid variable name. This name preceded by FN
becomes the name of function.

“arguments” consist of those variable names in the function definition that is
to be replaced when the function is called. The items in the list are separated
by commas.

“expression” is an expression that performs the operation of the function. It is
limited to single statement.

The variables in the argument represent, on a one-to-one basis, the
argument variables or values that are to be given in the function call.

User-defined functions may be numeric or string. If a type is specified
in the function name, the value of the expression is forced to that type before
it is returned to the calling statement. If a type is specified in the function
name and the argument type does not match, a "Type Mismatch" error occurs.

A user-defined function may be defined more than once in a program
by repeating the DEF FN statement. :

A DEF FN statement must be executed before the function it defines
may be called. If a function is called before it has been defined, an "Undefined
User Function" error occurs.

DEF FN is illegal in the direct mode. Recursive functions are not
supported in the DEF FN statement. DEF FN can define either numeric or
string function. DEF FN returns a string if name is string variable name and a
numeric value if name is a numeric variable name.

Example:

10 REM

20 DEF ENX(Y) = (Y 3+Y"2)/Y

30 INPUT “Enter any two numbers”, A,B

40 C = DEF FNX(A)+DEF FNX(B)

50 PRINT C

RUN

Enter any two numbers 4 5
50

Example:

10 CLS

20 PI=3.1415

30 DEF ENR(X) =PI*X " 2

68 NOT FOR SALE - PESRP

40 INPUT “Radius="; RAD
50 PRINT “Circle Area is ”; ENR(RAD)

60 END
RUN
Radius = 2

Circle Area is 12.556697

5.2 Subroutines

A subroutine is a self-contained set of statements that can be used from
anywhere in a program. The subroutine performs its specific task, and then returns
control to the part of the program that calls the subroutine. Sometime, it is more
convenient to structure a sequence of statements as a subroutine than as a function.
Subroutines are similar to functions in the sense that they can be referenced from
other places in a program. Unlike a function, however, a subroutine is not given a
name, and it can be used to determine more than one numeric and or string quantity.
In BASIC language GOSUB-RETURN and ON-GOSUB statements are used for
subroutine.

GOSUB ... RETURN Statement

Purpose: To branch to, and return from, a subroutine.

A subroutine may be called any number of times in a program, and a
subroutine may be called from within another subroutine. Such nesting of
subroutines is limited only by available memory.

A RETURN statement in a subroutine causes GW-BASIC to return to
the statement following the most recent GOSUB statement. A subroutine can
contain more than one RETURN statement, should logic dictate a RETURN
at different points in the subroutine.

Subroutines can appear anywhere in the program, but must be readily
distinguishable from the main program.

To prevent inadvertent entry, precede the subroutine by a STOP,
END, or GOTO statement to direct program control around the subroutine.

Syntax:

Line No GOSUB line number

Line No RETURN [line number]
line number is the starting line number of the subroutine and
optional in RETURN statement.
Examples:
10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"
30 END

]

69 © NOT FOR SALE - PESRP

40 PRINT "SUBROUTINE";

50 PRINT " IN";

60 PRINT " PROGRESS"

70 RETURN

RUN

SUBROUTINE IN PROGRESS

BACK FROM SUBROUTINE

The END statement in line 30 prevents re-execution of the

subroutine.

5.3 FILE HANDLING _

A computer can process large amount of data. To know how data can be
written and read from files, we must know a brief concept about files. Thus we need
to know about data items and records.

Characters consist of alphabets, digits and special characters. These are
represented inside the computer as a sequence of 1s and Os.

Data Fields are group of related characters to have a unit of information. For
example a student name, his rolls no are two different data fields.

Record a group of related fields is called record. For example the combination

of name, father name, rolls no, age, address is a record of a student.

Up till now we used different techniques to get data in a program. For example
- LET, INPUT and READ/DATA statement. It is always useful to store input

and output in a data file. The most important files are program files and data

files.

Program files: Program files contain the program or instructions for the
computer.

Data files: Data files contain data and information needed for programs to
perform execution successfully. Data files are "linked" to or "included" with a

- program file during run-time or compilation time. These two access methods
are called sequential and random.

By definition, sequential access means that the data contained in the
targeted file will be accessed in the order in which it is physically stored on the
disk. In other words, if you want to access the 25th record within a file,
records 1 to 24 must be accessed first in order to reach the 25th (target)
record.

Random access allows the programmer to directly access a specific
record within a particular file. This obviously makes the search for a record
contained in a file extremely faster than sequential access.

Sequential Files
It is important to note that a file position pointer is used by a file to
"point to" the next record to be processed in the file. At first, the pointer starts

70 NOT FOR SALE - PESRP

at the very beginning of the file therefore pointing to the first record, and then
it is incremented to each next record while "cycling” through the file. This is
how sequential access is able to work. The imaginary file position pointer is
actually sequentially moved to each record within the file until the target
record is reached. :

Opening a File : =

- When creating or accessing a sequential file, the first thing -the
_programmer must do is open the file using the OPEN statement. The OPEN
statement has the following form: .

OPEN "fileName.ext" FOR mode AS # [buffer]

The OPEN statement will provide the name of the file, the way in
which it will be used (mode), and the buffer number of the file. The same rules
apply for naming data files as they do for naming "regular" BASIC program
files, except a data file should normally be given an extension (.ext) of .DAT
where as a program file is given an extension of .BAS. This could mean that
the program using the data file could have the same name as the data file. The
extensions would be the only way to distinguish the files from each other; this
is a customary thing to do when naming program and data files that w1ll only
be associated with each other.

You can use a file as either OUTPUT, INPUT, or APPEND; these are
the mode options. OUTPUT means that the program will eventually write
data to the file. INPUT means that the data contained in the file will
eventually be read into the calling program. APPEND means that the data will
be added to the end of an existing file on disk. g

A buffer is a reserved section of primary storage used for storing
temporary data being written to or read from a file. The programmer specifies
the buffer number of a file, and it is used by the program to recognize and
identify the file that is attempting to be manipulated. The buffer number of
the file must be known by the programmer when attempting to write data to or
read data from the file. :

If you try to open a file that doesn't exist, a new file will be created. If
you try to open a pre-existing file as OUTPUT, the file will be overwritten and
will lose all of its contents or data. For example, consider the following OPEN
statement: :

OPEN "STUDATA.DAT" FOR OUTPUT AS #1

- The above OPEN statement would open the file STUDATA.DAT for
output using 1# as a buffer number. If STUDATA.DAT pre-existed on disk,
~ then it will be overwritten and created as an empty file. Once you have
successfully opened a file, you can either write data to it, read data from it, or

71 NOT FOR SALE - PESRP

append records to the file; this depends on what mode you specified for the file
in the OPEN statement.
Writing to a File

Writing to a file that has been previously opened in OUTPUT mode is
accomplished using the WRITE# statement. The WRITE# statement works
much like the PRINT statement, except instead of sending output to the
screen, the WRITE# statement will send data to the opened file. Another
difference is that when using the WRITE# statement, you must first indicate
the buffer number of the file being written to. For example, consider the
following WRITE# statement:
WRITE #1, name, address, phone

The above statement would write the data contained in the name,
address, and phone variables to the file using buffer number 1. The WRITE#
statement actually only transfers the data into buffer 1's primary storage
location. The transfer from primary memory to secondary memory actually
occurs when "closing" the file, which is covered further in the article.

Reading From a File

Reading data from a file that has been previously opened as INPUT is
accomplished using the INPUT# statement. The INPUT# statement is
similar to the INPUT statement, except instead of reading user data input
from the keyboard, the INPUT# statement reads data input from a file on

disk. For example, consider the following:
INPUT #1, stuName, gpa, grade

The above statement would take values associated with the file with
buffer number 1, and assign the values to each of the specified variables in the
statement one value at a time. It is important to note that the INPUT#
statement reads data from the record that is currently being pointed to by the
file position pointer. After the INPUT# statement is executed, the file
position pointer will be incremented to the next record in the file, and then
the process is repeated if trying to read more data in the file.

It is also important to realize that there is an end-of-file (EOF)
character at the end of every file. This allows the program accessing the file to
recognize when there is no more data left in the file. The end-of-file character
comes in handy when reading data from a file because it will let you know
when all data has been read. The function EOF() that is used to check for the
end of a file during the reading process. The EOF() function will return a
value of false (0) if there are more records in the file, or it will return a value .
of true (1) if the end of the file has been encountered. Therefore, the EOF ()

function is actually evaluated like a Boolean expression. The argument sent

72 NOT FOR SALE - PESRP

into the EOF() function will be the buffer number of the file being
manipulated. Because the EOF() is a Boolean expression that returns a value
of true or false, it is an efficient way of controlling the execution of a loop
during reading data from a file. For example, consider:

10 WHILE NOT EOF(1)

20 INPUT #1, stuName, gpa, grade

30 PRINT "STUDENT: "; stuName; SPC(5); gpa; SPC(5); grade

40 WHILE

The above code would read all data and records contained in the file
with buffer number 1 and print the data for each record until the end-of-file
marker is reached. If you want to access and point data sequentially access and
print data contained in a particular record in a file, you would have to read in
(but not print) all the records preceding the "target" record. This can be
accomplished by creating a "dummy" variable to keep track of how many
records have been read from the file until the record you are trying to access is
the next record to be read. This is time consuming, you reach to desired
record in-efficient, and a better solution to this problem would be to use a
random access method file. We dive into the details of random access later.

Closing a File

After use of a file, it must be closed. When writing data to a file on
disk, the CLOSE statement is responsible for transferring the data currently in
primary memory to secondary memory (file on disk). So, it is imperative that
you close open files. This is accomplished using the CLOSE statement as
follows:

CLOSE #buffer

Data is written to file (physical) when COLSE Statement encountered. It
writes all temporary data that is currently in the corresponding buffer to the
file. If we want to close our previous STUDATA.DAT file, we use it as:
CLOSE #1

You can also close many opened files using a single CLOSE statement as
follows:

CLOSE #1, #2, #3, ..., #n

You can also close all currently opened files using a single CLOSE statement
with no parameters by simply issuing:

CLOSE

Study the following complete program illustrating how to write/read data using
a sequential file before moving on to learn about random files:

REM TOPIC CONCENTRATION: SEQUENTIAL FILES

REM This program will create a sequential file named INFO.DAT

REM The file will then be used to store input data by user

73 NOT FOR SALE - PESRP

REM and then to retrieve the data shared in file.
OPEN "INFO.DAT" FOR OUTPUT AS #1
LS
REM Get input from user
INPUT "Do you wish to enter student information (Y/N)"; ANSWER$
IF ANSWER$ = "n" OR ANSWER$ = "N" THEN NODATA = 1 ELSE
NODATA =2
WHILE ANSWER$ = "Y" OR ANSWER$ = "y"
INPUT "Enter student name: ",NAMES$
INPUT "Enter student id: ", ID
INPUT "Enter student GPA: ", GPA
REM Werite current input to temporary buffer storage 1
WRITE #1, NAMES$, ID, GPA
INPUT "Do you wish to enter new student information (Y/N)"; ANSWER$
WEND
REM Transfer data from temporary buffer 1 to actual INFO.DAT
CLOSE #1
OPEN "INFO.DAT" FOR INPUT AS #2
IF NODATA<> 1 THEN
PRINT
PRINT "STUDENT LISTING"
PRINT n "
END IF
WHILE NOT EOF(2)
INPUT #2, NAMES$, ID, GPA
PRINT
PRINT "STUDENT NAME: "; NAME$
PRINT " STUDENT ID:"; ID
PRINT " STUDENT GPA:"; GPA
WEND
CLOSE #2
END

Random Files

If the solution to the problem you are working with deals with directly
accessing a particular record in a file, then the most efficient algorithm to use
would involve using a random file access method. As previously mentioned,
random files have the capability of accessing a record within a file without the
need to access all preceding records like in sequential file. Specifying that a file
be treated as random uses a form similar to when specifying different mode
operations for a sequential file. As with all file types, the first thing the

74 ' NOT FOR SALE - PESRP

programmer must do before attempting to use the file is open it. The form of
opening a random file is as follows:

OPEN "fileName.ext" FOR RANDOM AS # [buffer] LEN =
LEN (recordVariable)

Notice that we opened the file as being RANDOM and a buffer file
number is used as usual (if this does not look normal. The major difference is
the LEN = LEN() function initialization. The argument, recordVariable, that
is sent into the LEN() function is a variable of a record type. The LEN()
function will return the size of recordVariable in order to allocate space for
each record to be stored in the file.

Writing or Storing Records

When dealing with random files, you can't send data from each field in
a record one-by-one into the file. Instead, random files let you send the
contents of the entire record to the file in one statement. This is accomplished
by using the PUT statement, and the PUT statement also specifies the
location in the file where the record is being sent. The PUT statement has the
following form:

PUT #[buffer], recordNumber, recordVariable

In the above statement, the buffer file number must be first specified,
the number of the record or the location of the record to be placed in the file
is next, and finally the actual record variable is specified so the program knows
which record to send to the file.

Reading Records

The complete opposite operation of the PUT statement would be to
retrieve or get data contained in a data file. BASIC has a built-in function to
handle this situation also. It is called GET and has a form identical to the PUT
statement. The form of the GET statement is as follows:

GET #[buffer], record Number, record Variable

When using the GET statement, any record can be directly accessed by
specifying the record's number or location file number. This is what makes
random files much more powerful than sequential files. We can create random
files but at this stage it is beyond the scope of the book.

75 NOT FOR SALE - PESRP

I Fillinthe blosks

(i) A subroutine itself is a program.

(i) A function is used to calculate and return a value.
(ii) GOSUB and GOTO statements are '
(iv) A GOSUB is used to invoke a
(v) User-defined function may be numeric or
(vi) INT(7.6) = '

(vii) A user defined function is started with a keyword ;
(viii)y GOSUB statement must be ended with statement.
(ix) The RND function is referred to as a number generator.
(x) is a collection of fields to provide information about an -
entity in a file.
2. Choose the correct answer.
(i) LEFT$ (‘Pakistan”,3) = _
(a) ‘Pak’ (b) ‘PAK’ ()t Pal (d) ‘kis’
(i) The outer of a function INT(-5.7):
(@-5 . (b) —4 (c) -6 (d) 5
(iii) RIGHTS$(x$,n) will
(a) Leave ‘n’ spaces at the right of string x$
(b) Leave ‘n’ spaces at the left of string x$
(c) select ‘n’ characters from the right of side
(d) select ‘n’ spaces from the right of side.
(iv) The function is used to convert ASCII codes to its
character equivalent. s
(a) CHARS() (b) CHR((c) CHAR. (d) CHR$()
(v) Instructions that are written once in the main program or
independently and can be called more than one time in the main
program is called.
(a) Control Statement (b) Loop
(c) Subprogram (d) None of them
(vi) TAN(x) =
(a) SIN(x)/COT (x) (b) COT(x)
(c) COS(x) / SIN(x) ~ (d) SIN(x)/COS(x)
(vii) The output of SGN(-4) is: :
(a) < ’sign by sion
(c) O (d) None of them
(viii) A file is activated with one of the following statement before its use:
(a) WRITE (b) READ
(c) PRINT (d) None of them

76 NOT FOR SALE - PESRP

© PN s

11.

12.
13.

14.

15.

(ix) A file can be organized in the following ways:

(a) One way (b) Two ways
(c) Three ways (d) Four ways
(x) To read information from a file, it must be opened for:
(a) Input (b) Output
(c) Both aand b (d) None of them
Write T for True and F for False statements.
(i) There are three techniques to organize files.

(i) Statement END must be placed at the end of main program.

(iii) FIX function gives an integer value by rounding off the fractional part.
(iv) Subroutines are not easy to design and debug and modify.,

(v) A function is associated with two statements GOSUB and RETURN
(vi) A file is an organized collection of records.

(vii) An OPEN statement must contain a reference to the file.

(viii) Built-in function can also be defined as library function.

(ix) A file opened for output is used to read data from it.

(x) The keywords used for using subroutines are GOSUB and RETURN
What is the difference between user-defined function and built-in functions?
Differentiate between Sub-routine and Function.

Describe the use of GOSUB...RETURN statement.

What is the difference between Sequential and Random files?

Describe the way of opening, closing, reading and writing to a sequential file.
Differentiate between data file and program file.

Write down the purpose of the following functions:

(i) ABS() (i) INT()
(i) SQR() (iv) SIN()
(v) TAB()

Write a program to get full name of any person and return the number of
characters in his first name.

Write a program that print ASCII characters from 1 to 255.

Werite a program that is used for the converston of temperature from Celsius
scale to Fahrenheit scale with the help of DEF FN function.

Write a program to calculate and print following formula by using user-defined
function. Combination = n!/k!(n-k)!

Write a program to implement a telephone directory using sequential access
files. Your program should be capable of writing the name, telephone number
and address of your friends to a sequential file.

77 R NOT FOR SALE - PESRP

7 (i) Small (ii) Single (iii) Different
(iv) Subroutine (v) String (vi) 7
(vii) DEF FN (viii) RETURN (ix) Random
(x) Record
2. (i) ¢ (ii) ¢ (iii) ¢
(iv) d (v) ¢ (vi) d
(vii) d (viii) d (ix) b
(x) ¢ '
3. (i) F iy T (iii) F
(iv) F (v) F (vi) T
(vii) T (viii) T (ix) F
x) T :

78 NOT FOR SALE - PESRP

Chapter 6

GRAPHICS IN BASIC

6.1 INTRODUCTION

Graphics is an art to design and produce pictorial representation of
information. This facility is provided in almost all the versions of BASIC language. It
is displaying information on screen. Graphic is that area of computer programming
which is highly in use these days. It depends on the hardware such as input, output
and graphic card (Color Graphic Adaptor, Video Graphic Array).

Let us start from the beginning. Your screen is made up of hundreds of pixels.
The number of pixels horizontally and vertically determines the resolution of your
monitor. In GW-Basic, we can be in any number of graphics modes, which define the
current graphics resolution (pixels), text resolution (characters), number of colors,
and number of video pages. There are 13 screen graphics modes, and each has its
different purpose. There are several ways of drawing to the screen. Each uses things
called coordinates to define what area of the screen to use. A coordinate is a specific
pixel (Picture element: A pixel is one dot on the screen). Your computer screen is
made with 1 million little square of color (pixel) you can determine any coordinate. A
coordinate can be determined by counting the numbers of pixels down and the
number of pixels to the right the pixel.

BASIC provides three modes of displaying data.
e Text Mode
* Medium —Resolution Graphic mode
e High-resolution Graphic mode

Text Mode is used for only textual data. In text based graphic, text and lines
can be drawn on the screen. The whole screen is divided into 80 column and 25 rows.
It has 16 colors out of any 2 colors palettes (table 6.1). Columns are counted from 0
to 39 or 79 and rows from 0 to 24. '

Medium-Resolution Graphic Mode is used in drawing graphic. The display
screen is divided into a matrix consisting of 320 columns and 200 rows of pixels.
Thus the position of each and every pixel will be determined by its coordinates on x-
axis and y-axis of the screen. This graphical mode works with 4 colors. The different
four colors are 0,1,2,3, one of 16 color can chosen for background and one for
foreground. Each of the foreground and background palettes is given in table 6.1

High Resolution Graphic Mode is used in drawing graphics with matrix of 640 X
200 pixels. We are able to display the text characters in 25 lines of 80 characters in
each line.

79 NOT FOR SALE - PESRP

6.1.1 SCREEN Statement

The SCREEN statement is commonly used to select a screen mode
appropriate for a particular display-hardware configuration. For example the
supported hardware configuration like IBM Monochrome Display and Printer
Adapter (MDPA) with mode O is used to connect only to a monochrome
display. Programs written for this configuration must be in text mode only.

Syntax:
SCREEN [mode] [, [colorswitch]]

Where screen mode is a numeric value from 0, 1, 2, 7, 8, 9, 10. It may
not be run on each type of computer or monitor, because it depends on the
display card and monitor’s type. Different modes of screen are below.

Screen modes 0, 1, 2, 7,8, 9, and 10

In' BASIC language, screen mode 0 is by default mode. It is only text
base, and it can be viewed on the screen. Screen mode 1 activates medium
resolution graphic mode. Graphic up to resolutions 320 x 200 pixels can be
obtained in it. Screen mode 2 activates high resolution graphic mode. Graphic
of resolution 640 X 200 pixels can be obtained in it. It also needs good quality
monitors like CGA(Color Graphics Adapter), (EGA) Enhanced Graphics
Adapter ,VGA etc.

Screen modes 7,8,9,10 are also used to draw medium resolution and
high resolution graphics. All of them support graphics and good quality result
can be obtained in them. Some major screen modes describe below.

SCREEN MODE DESCRIPTION
0 Text mode only, you can’t use any graphics
1 320 x 200, only has 4 colors
2 640 x 200, only 2 colors (Black and White)
7 320 x 200, 16 colors and supports pages (get to later)
This screen mode is very useful
8 640 x 200, 16 colors no pages
9 640 x 350, 16 colors suppotts pages (very useful!)
10 640 x 350, 2 colors (black and White)
11 640 x 480, 2 colors
12 640 x 480, 16 colors (very useful)
13 320 x 200, 256 colors (extremely useful)
For various screen modes and display hardware configurations,
different attribute and color settings exist. (See the PALETTE statement for a

discussion of attribute and color number.) The Default Attributes and Colors
for Most Screen Modes are:

80 NOT FOR SALE - PESRF

Attributes for Mode Color Display

L9 2 07,89 Number Color
e 0 0 Black
1 1 Blue
2 2 Green
3 3 Cyan
4 4 Red
5 5 Magenta
6 6 Brown
7 7 White
8 8 Gray
9 9 Light Blue
10 10 Light Green
1 11 11 Light Cyan
12 12 Light Red
2 13 13 Light Magenta
14 14 Yellow

=3 15 > 15 High-intensity White
Table 6.1 Color attributes for screen except screen 10

6.1.2 COLOR Statement
After screen modes the next important thing used in graphics is the

COLOR statement. The purpose of COLOR statement is to select display

colors.

Syntax:

COLOR |[foreground] [, [background] [,border]]

COLOR [background)[,[palette]] -

COLOR |[foreground] [, [background)]

In general, COLOR allows you to select the foreground and
background colors for the display. In SCREEN 0 a border color can also be
selected. In SCREEN 1 no foreground color can be selected, but one of two
four-color palettes can be selected for use with graphics statements. The
different syntaxes and effects that apply to the various screen modes are
described below: '

81 NOT FOR SALE - PESRP

SCREEN 0 Modifies the current default text foreground and

background colors, and the screen border. The foreground

color must be an integer expression in the range 0-31. It is

used to determine the "foreground” color in text mode,

which is the default color of text. Sixteen colors can be

selected with the integers 0-15. A blinking version of each

color can be selected by adding 16 to the color number; |
for example, a blinking color 7 is equal to 7 + 16, or 23.
Thus, the legal integer range for foreground is 0-31.

The background color must be an integer expression in the |
range 0-7, and is the color of the background for each text
character. Blinking colors are not permitted.

The border color is an integer expression in the range O-
15, and is the color used when drawing the screen border.
Blinking colors are not permitted.

If no arguments are provided to COLOR, then the default
color for background and border is black (COLOR 0), and
for foreground, is as described in the SCREEN statement
reference pages.

SCREEN 1 In mode 1, the COLOR statement has a unique syntax
that includes a palette argument, which is an odd or even
integer expression. This argument determines the set of
display colors to use when dnspla\rmg particular color
numbers.
For hardware configurations the default color settings for
the palette parameter are equivalent to the following:
COLOR ,0 'Same as the next three PALETTE
staitements

'l = green, 2 = red, 3 = yellow
COLOR ,1 'Same as the next three PALETTE

statements
'l = cyan, 2 = magenta, 3 = whue

SCREEN 2 No effect. An "lllegal function call" error message occurs if
COLOR is used in this mode.

SCREEN 7- | In these modes, no border color can be speciﬁeci. The
SCREEN 10 | graphics background is given by the background color

82 NOT FOR SALE - PESRP

Examples:
The following series of examples show COLOR statements and their
effects in the various screen modes:
SCREEN 0
COLOR 1, 2, 3 'foreground= 1, background=2, border=3
SCREEN 1
COLOR 1,0 'foreground=1, even palette number
COLOR 2,1 ‘foreground=2, odd palette number

SCREEN 7 _

COLOR 3,5 ‘'foreground=3, background=5
SCREEN 8

COLOR 6,7 'foreground=6, background=7
SCREEN 9

COLOR 1,2 ‘foreground=1, background=2

6.1.3 PALETTE
It is used to select from one of two color sets that are already available

such that these colors sets will be used by color parameter of a LINE, CIRCLE,

PSET, DRAW or other graphics utilities.

Syntax:

PALETTE [attribute, color]

The PALETTE statement works only for systems equipped with the
Enhanced Graphics Adapter (EGA). A GW-BASIC palette contains a set of
colors, with each color specified by an attribute. Each attribute is paired with an
actual display color (see in Table 6.1). This color determines the actual visual
color on the screen, and is dependent on the setting of your screen mode and
your actual physical hardware display.

The value of palette may be ether 0, 1. If palette 0 or 1, then the colors are:

Palette Numbers Color

0 0 Back ground Color

0 1 Green

0 2 Red

0 3 Brown

1 0 Back ground Color

1 1 Cyan

1 2 Magenta

1 3 White
6.2 PSET Statements

Purpose: To display a point at a specified place on the screen during use of

the graphics mode.

83 NOT FOR SALE - PESRP

Coordinates values can be beyond the edge of the screen. However, values
outside the integer range (-32768 to 32767) cause an "Overflow" error. (0,0) is always
the upper-left corner and (0,199) is the lower-left corner in both high resolution and
medium resolution. If the value for color is greater than 3, an "Illegal function call"
error is returned.

Syntax:

PSET (x,y) {,color]

PSET (x offset, y offset) is a point relative to the most recent pomt
referenced. For example:

PSET(10,10)

Example 1: :

The following program clears out the line by setting each pixel to O.
40 FOR 1=100 TO 0 STEP -1

50 PSET(L1),0

60 NEXTI

6.3 LINE Statement

The purpose of LINE statement is to draw lines and boxes on the screen. We
can use the LINE statement to generate a line between any two statements.

Syntax: ;

LINE ((xI,y1)]1-(x2,y2) [,[actribute] [,B[F]][;style]]

In the syntax the values (xI,yI) and (x2,52) are used to specify the
coordinate positions of starting and ending point of the line. These two points
positions are separated by a minus or dash sign. The attribute specifies the color
or intensity of the display pixel.

B(box) to draw a box with the points (xl,yl) and (x2, y2) at opposite
corners. BF(filled box) to draw a box as B and fills in the interior with points.
The style is a 16-bit integer mask used when putting down pixels on the
screen. This is called line-styling. Style can one of 0,1, 2, 3, 4, and 5. It is used
for normal lines and boxes, but invalid for filled boxes.

The simplest form of LINE is the following:
LINE -(x2,y2)

This draws a line from the last point referenced to the point (xZ y2) 1n

the foreground color.

Examples:
LINE (160,0)-(160,199)

LINE (0,0)-(100,175),,B

a square box in the upper left corner of the screen.

84 NOT FOR SALE - PESRP

T S A

6.4 CIRCLE Statement
The purpose of CIRCLE statement is to draw a circle, ellipse on the screen
during use of the Graphics mode

Syntax:

CIRCLE(x,). radius .[. [calor][, [start}, [end] [,arspeét] 11

The (x .y) are the x- axis and y-axis coordinates of the center of the
circle or ellipse, and radius is the radius (measured along the major axis) of the
circle or ellipse. The quantities X and y can be expressions.

The color specifies the color of the circle or ellipse. Its value depends

“on the current screen mode. In the high-resolution mode, 0 indicates black
and 1 indicates white.

The start and end angle parameters are radian arguments between -2
and 27 which specify where the drawing of the ellipse is to begin and end

The aspect describes the ratio of the x — axis to the y —axis (x:y). The -
default aspect ratio depends on the screen mode. :

Example 1:

10 SCREEN1: CIRCLE(100,100), 50

Ellipse is a mathematical term used for shapes of oval type by using one
more parameter to the CIRCLE statement, ellipse can be drawn.

Example 2:
10
20
30
40
50

REM draw an ellipses -
CLS

SCREEN 2

CIRCLE (40,80),30,1,,.1
END

In this case, height of ellipse will be greater than its width.

Example 3:
.
20
30
40
50

REM draw an ellipses
CLS

SCREEN 2

CIRCLE (40,80),30,1,,,2

- END

The ellipse drawn from the above program will be less in width than
that of example 2.
6.5 DRAW Statement
The DRAW statement is used to draw lines and other shapes on the screen. It
is valid only in graphics mode. DRAW statement is used to a object of the shape other
than circular. The object would be drawn as specified by a string containing drawing

commands.

85 NOT FOR SALE - PESRP

Syntax: DRAW string

A string consists of single character command followed by a prefix that
controls the size, direction etc. of the line and enclosed in the quotation
marks. Each of the following movement commands begins movement from the
current graphics pusition. Movement commands move for a distance of scale
factor *n, where the default for n is 1; thus, they move one point if n is omtrted
and the default scale factor is used.

Command Moves ‘Un :
Un up & i Hn En
Dn down ; ' :
Ln i left
Rn right 2a S
En diagonally up and right
Fn diagonally down and right Gn CFn
Gn diagonally down and left =~ Dn
Hn diagonally up and left

The following prefix commands may precede any of the above
movement commands: '
B ~ Move, but piot no points.
N Move, but return to original position when done.

REM PROGRAM I'O DRAW A TRIANGLE
20 SCREEN 2 '
30 PSET(250,50)
40 DRAW “G50 R100 H50”
50 REM PROGRAM TO DREW A SQUARE
60 SCREEN 2
70 PSET(250,50)
80 DRAW “R50 D50 L50 U50”

When you run the program, a square will be obtained

1. Fill in the Blanks: :
() TSCREEN Lis - fa resolution graphic mode.

(ii) In the text mode characters are displayed on the screen in _
columns multiplied by Tows. :
(iii) In medium resolution mode, the screen is divided into a matrix of
pixel.

(iv) A string consists of double character command followed by prefix that
- control the size, direction in statement.

86 ! 'NOT FOR SALE - PESRP

)
(vi)
(vii)

(viii)
(ix)
(x)

statement is used to draw lines and other shapes.
The color of mode 3 belonging to palette O is

The high resolution mode is used rows and column of
matrix
A picture is composed of fine dots called
The palettes are numbered and _ each with four colors.
Color statement will not function in _ resolution graphic
mode.

Choose the correct answer.

(i)

(i)
(iti)
(iv)
v)

- (vi)

(wvii)

(viii)
(ix)
(x)

Which of the following is not a valid graphxc mode command?

(2) LINE (b) PSET (c) COLOR (d) none of them

The number background colors available in BASICis:

(a) 4 b8 4 () Hd = - (d) 16

Which function changes the way of displaying output in BASIC?

(a) SCREEN (b) PRINT (c) LEFT$ (d) ABS

On color monitors, SCREEN modes are of : aps

(a) 2 types (b) 3 types (c) 4 types (d) 5 types

Normally the computer monitor screen is in: :

(a)Graphic mode (b) Text (c) Bothaandb (d) None of them
- mode :

A line can be draw with the followmg statement : :

(a) LINE (b) DRAW (c) Bothaandb (d) None of them

The prefix “B” in DRAW statement is used for:
(a) Draw a block (b) Move with (c) Bothaandb (d) Move with blue mark

black mark
The set of colors RED, GREEN and BROWN is given in:
(a) Palette 0 (b) Palette 1 (c) Bothaandb (d) None of them
- The CIRCLE statement can also be used to draw a/an:
(a) Line ‘(b) Box (c) Ellipse (d) pset
In medium resolution screen mode colors for foreground are:
(a) 1 (b) 2 : (c) 4 (d) 16

Write T for True and F for False statements.

(i)

(i)
(ii)
(iv)

(V)

(vi)
(vii)

(viid)

It is'hard to see and measure a single pixel.

The format of COLOR statement depends on the text mode.
With text mode we can not draw a good picture.

PSET statement is used to specify the coordinates x, y.
DRAW is used as a low logic graphic program.

Two pairs of coordinates are used with LIN E statement.
LINE statement can draw a diagonal line on the screen.
Screen function can be set to either of three modes.

87 NOT FOR SALE - PESRP

i

\© 0 2 o

10.

11.
12.

13.
14.
15.
16.

(ix) In text mode characters are displayed on the screen in 40 column and 25 rows.
(x) CIRCLE statement can also be used to draw an ellipse.

Define Graphic. Give the names of graphic modes.
What are the coordinates of text mode, medlum resolution mode and hlgher :
resolution mode? :

- Describe the SCREEN Statement.

Write the syntax of CIRCLE statement. Also give example for explanation.

- Compare and differentiate LINE and DRAW statements.
. Find out the errors in the following if any?

(a) LINE (140,100)-(300-100),2,BF,4 _
(b) 10 SCREEN 2 (c¢) 10 SCREEN 1
20 COLOR 1, 2 . 20 A=20
30 DRAW “U10RI1I0 D1I0L10” 30 DRAW “U=A R=A, D=AL=A"

What will be the output of the following.

(@@ 10 SCREEN2 (b) 10 SCREEN2
20 PSET(250, 50) 20 FORI=30TO 180
30 DRAW “G50 RIOOH50” - 30 CIRCLE(1,100), 50
40 END : 40 NEXTI

Write a program to draw a star.

Define the COLOR statement. How many color backgrounds are available
with color statement?

Define the Palette.

Briefly discuss th. PIXEL.

Werite a program to produce five concentric circles of different radii.

Write a program to draw a parallelogram by using DRAW statement.

 Answers
@ High (40,25 Gii) 300 200 (iv) DRAW
.(v) DRAW (vi) Brown (vii) 640,200 (viii) Pixels
(ix) 0,1 (x) High = _
(i) c Gy a i) (v) d) b
(v1)jc_ (vii) ¢ (viii) a (ix) c (x) a
@ T @) F Gl T O F

(vi) T (vii) T (viii) F ~ (ix) T x) T

88 : NOT FOR SALE - PESRP

Chapter 7

MICROSOFT WORD

7.1 INTRODUCTION

Initially the past people use to write document with the help of pen or pencil

“and paper. Then after that they have started to use typewriter but people still face too

many problems such as erasing or editing etc. the documents. Computer software
solved these problems. There is variety of software that performs specific task. For
example, word processor is an application that is used to write documents. Microsoft
word is a powerful word processing program. : : .
Microsoft Word is an essential tool for the creation of documents. Its ease of
use has made MS-Word one of the most widely used word processing applications -
currently on the market. You can use it to produce professional-looking documents. If
you want to create a simple letter to a friend or you want to write a detailed, multi-
page report containing graphics and tables with numerical data, you can do it quickly

- and easily done in the Microsoft Word. It allows you to easily combine text,

spreadsheets, and graphics into a single application. You can also use Word to create
your own Web pages. Word’s variety of pull-down menus, toolbars, and buttons make
learning and using it remarkably easy.
Therefore, it is important to become familiar with the various features of latest

MS- WORD 2003 software. The characteristics of MS-Word are: Eats

® To create a fast and easy documents quickly.

® To provide built-in templates for creating; letters, journals, faxes, calendars
~ and many more. _ = e
To give built-in spell checker and grammar.
To provide auto-correction by just mouse clicking.
To insert an AutoText entry so as to insert a short cut key for a long text or
paragraph. :
To take multiple hard copies of a document.
To give the facility to open an existing document
To save document for future use
To make easily be edited and formatted.
To provide facility to undo and redo what we have typed or taken an action.
To give a quick finding and replacing the text.
To provide facility creating tables, pictures and even one can applying simple
formulas etc. : '

® One of the best features is to save the document in HTML format.
Some of the features may not available in lower version of MS-Word.

89 NOT FOR SALE - PESRP

7.1 LOADING MICROSOFT WORD

Loading the Word processor is the process to run \Vord on your computer:
“Start” >> “Programs” >> “Microsoft Office” >> “Microsoft Office Word .” If
there is an icon of Microsoft Word available on your desktop (shaped like a square
with a "W" in the middle), you can open up the program by double~chckmg it, as well.

@: ek Pron e Accmss: s Dafasbs

% s Cetalag

: % Mhncowes Lpdate

: @ New Cffize Documment
i

@ Open Office Document

vy nccessores
WA T Corel Graphics Sulte 11

; B 38 acivate prodier

» i Sartup » (8] Marosoft Clin Croanizer]
] icrosoft Excel : |% Microsoft OFfice Application Retovery]
&) windaws Modia Player [% &8 Micrasoft Office Document Imaging
E] acobat Cistiler 5.0 |2 Microsoft Office Document Scarning
M acrobat Reader 5.0 & Microsoft Offics XP Language Settngs
[} Adobe Acrobat 5.0 ﬂa Save My suunqs Wizard
:@ Firahand Ember Merrium
i ¥

4 Log Off MAZALS. ..

Tl_mOFfCrmpuw
i € . e ;

Once the MS Word is 10aded we wﬂl be able to create, edlt and save a
document. Here we will learn how to create new document, writing text into the
document, saving and exiting form it. '

Screen Layout
The application window provides the space for the Word document.

The components of the apphcatlon window are:

JDocumsnt! Mxrrosaﬂ \Nard :

- ‘-‘me&f\lawﬂﬂns“ SgE e |_.|~y =ty
B DTl B New Decomen
mmﬁﬁ g » document
| TITLE-CS1E
; i chapter 7ic
Standard & Formatting =~ | cresterrio
Toolbar (sharing one row) | chesa

15 More documents...
Task Pane ,/’:i’m ot

T Blards Dozument
. BE) Blak Web Fage
] Blank E-rad Massage
> . . Mewfhomenisting decument
& v] Chooss dacumsnt...
Hew from bernplate:
B Ganeral Tamolates..
£ \) Templaras an o Wik Sibee..
§| Templakes on Micosof L com

Scroll Bar ——

el AR LS
2 = (% Addwetwork Place
. Status Bar © [T} toresst viod e
- : =] Thows #F shadtup

- lb-E “l_i 5 i _':_5

90 : NOT FOR SALE - PESRP

o SRR — L)

Title bar

Menu bar

Tool bar
Document Window
Status bar

View Button

T o o o o o @

Th

U/

1 Document1 - MicrosoftWord =~ L /&%]
We will start with the Title bar, which is located at the very top of the
screen. On the Title bar, Microsoft Word displays the name of the document
in which you are currently working. At the top of your screen, you should see
"Microsoft Word - Document1" or a specified name.
The Menu Bar and Drop Down Menus

Ele Edt Vew nsert Fomet Tools Table Window Help Type aquestion forhelp v %

The Menu bar is generally found directly below the Title bar. The

Menu bar displays the menu. The Menu bar begins with the word File and
continues with Edit, View, Insert, Format, Tools, Table, Window, ‘and Help.
You use the menus to give instructions to the

[Took | Table indow Help

software. Point with your mouse to a menu B Spaling arid Crammir =
option and click the left mouse button to open | s o
a drop-down menu. You can now use the left | Ladts s
and right arrow keys on your keyboard to lii:w i
move left and right across the Menu bar |

; 7] AutoSummatize. ..
options. You can use the up and down arrow e

s _ -
keys to move up and down the drop-down Tl e i SRR e
menu : : Track Changes Chri4-Shift+E |

Compare and Merge Qot.umentsu ;

= _ Protect Document. ..

When you begin to explore Word, you

will notice a significant change in the menu i
structure if you are familiar with previous | @ OdineColaboration . »
versions of Word. The menus in Word display | stersandvaiogs +
only the commands you have recently used. | Toolsontheweb...

To view all options in each menu, you must | Mawo : »
click the double arrows at the bottom of the | Templates and Add-Irs... :
menu. The images below show the Tool menu |25 auocorrect optiors...

collapsed (left) and expanded (right) after the Customize. .

double arrows at the bottom of the menu were Orbides

clicked: o
Drop Down Menus: Clicking on any of the menu bar items will cause MS-
Word to display a drop down menu, which in turn contains further items that
may be selected. In some cases the items within a drop down menu may appear
“grayed out”, this means that option is not currently available. To access the

9] ; NOT FOR SALE - PESRP

drop down menus using the keyboard, depress the Alt key and enter the letter
that is underlined within the drop down menu command, i.e., to display the
Tool drop down menu list, press Alt + T

Shortcut Menu

These features allow you to access various [y o™
Word commands faster than using the options on g, .
the menu bar. View shortcut menus by right - B pests
clicking with the mouse at work area of | % s
document. The options on this menu will vary | _
depending on the element that was right-clicked. IE; ilf?ﬂ
For example, the shortcut menu below is i, e |
produced by right-clicking on a bulleted list. e |

Toolbar

Toolbars contain small pictures
called tool icons which, when clicked
on, provide a shortcut method or
performing MS-Word action. MS - |
Word provides more than 18 tool bars, |-
often the Standard and Formatting -

toolbars are displayed. You can

customize MS-Word so that other |: ‘ ’
toolbars are displayed by default. Many |- JE row
toolbars displaying shortcut buttons are ' poming

also available to make editing and |: [#] metre
formatting quicker and easier. Select |- .o
View|Toolbars from the menu bar to : el B
select the toolbars. The toolbars that are i
already displayed on the screen are I
checked. Add a toolbar simply by :':m

clicking on the name.
The Standard Toolbar

Word allows all toolbars to be customized, so you may not find all
options listed here. There are several buttons that may or may not appear
immediately in your version of Word. Use the following graphic as a guide to
the Standard Toolbar.

NSESVGRY LAY o-0 QBORE X T 00v -0,
12 3 4 567 89 10 : b S |
1. New Blank Document: To begin a new document, click on the New

Blank Document icon, shaped like a blank sheet of paper.

2. Open: Clicking on this icon opens up a previously saved document on
your computer.

92 NOT FOR SALE - PESRP

10.

11.

12.

Save: Clicking on the Save icon saves the document you are currently
working on. If you are saving a document for the first time, you can
click on this button. However, if you want to save a new file from a
pre-existing document, then you must go to the menu bar and select
“File” >> “Save As” and give the file a new name. When working on
any document, you should be sure to save frequently, so that you don't
lose any work.

Permission: Microsoft has enabled Information Rights Management
(IRM) within the new version of Word, which can help protect
sensitive documents from being copied or forwarded. Click this for
more information and options. This option is not available in word
2000. :

Print: Clicking on the Print icon automatically prints the document
currently active in Word. If you wish to explore more print options,
then go to the menu bar and select “File” >> “Print.”

Print Preview: To get an idea of the appearance of your document in
print before you actually print it out, you can click on this icon to view
your document from a zoom-out distance.

Spelling and Grammar: Clicking begins a review of your document in
search of spelling and grammatical errors that may need to be
corrected.

Copy: Copy the current selection to the clipboard, which can then be
pasted elsewhere in the document, or into a completely separate
program/document. To copy text, choose Edit|Copy, click the Copy
button on the standard toolbar, or press CTRL+C to copy the text to
the clipboard.

Paste: Clicking on the Paste button inserts the text that has been most

~ recently added to the Clipboard (the text would have been added

there by Cutting or Copying). With Paste, you can either insert the
copied text into a document or replace selected text.

Undo Typing: The Undo Typing button goes back and removes the
last addition or change made to your document.

Insert Hyperlink: You may find that you want to make links to a
particular web site, web page, or some other kind of online file in your
Word document. Using the Insert Hyperlink button, you can turn
selected text into hyperlinks. When the icon is clicked, a window will
appear that will allow you to insert the URL (web address) of the web
page you want to link to.

Insert Table: When this icon is clicked, a small window will appear in
the form of a grid of squares. Use this window as a guide to indicate
how many rows and columns you would like your table to contain.

93 NOT FOR SALE - PESRP

‘Once selected, a table will automatically appear in Word. Clicking the
Tables and Borders button will allow you to modify the table. To
modify an aspect of the table, select, or place the cursor in, the area
and apply changes such as borders and colors.
The Formatting Toolbar
Word allows all toolbars to be customlzed so you may not find all
options listed here. There are several buttons that may or may not appear
immediately in your version of Word. Use the followmg graphic as a guide to
the Formatting Toolbar.

ﬁhﬁoﬂﬁa{ -TlmssNamean-lszB J‘!i'f.%%%::vig——!=:;*§:§:§§;'-y.¢?v&vv
1 2 3 45 678 910 11 12 131415 16 17 18
I Style: Styles in Word are used to quickly format portions of text. For

example, you could use the " Normal" or "Default Paragraph Font" for
the body text in a document. There are also three preset styles made
for headings. :

2 Font: Font is a simple but important factor in Word documents. The
choice of font (the style of the text itself) can influence the way others
view documents, either on the screen or in print. For example, Arial
font looks better on screen, while Times New Roman is clearer in
print. To apply a font to text, select desired text with your cursor, and
choose a font from the font drop down menu. Scroll down to the font
you want and select it by clicking on the name once with the mouse. A
serif font (one with "feet" circled in the illustration below) is
recommended for paragraphs of text that will be printed on paper as
they are most readable. The following graphic '
demonstrates the difference between serif (Times @I‘ :

New Roman on the left) and sans-serif ("no feet, T
Arial on the right) fonts.

3. Font Size: You may encounter times in which you need to display

some text larger or smaller than other text. Selecting desired text with

the cursor and choosing a font size from the drop down menu changes
the size of text. Select a size by clicking on it once. A font size of 10 or

12 is best for paragraphs of text.

Bold: Places the text in bold.

Italic: Places the text in italics.

Underline: Underlines the text. =

Align Left: Aligns the selection to the left of the screen/paper.

Center: Aligns the selection to the center of the screen/paper.

Align Right: Aligns the selection to the right of the screen/paper.

0. Justify: Aligns the selection to both the left and right of the

screen/paper.

e 00 el SON L o

94 2 NOT FOR SALE - PESRP

Line Spacing: Adjust the line spacing (single-spaced, double-spaced,

11.
etc.)

12. Numbering: Create a numbered list.

13. Bullets: Create an unordered, bulleted list.

14. Decrease Indent: Decreases the indentation of the current selection
(to the left). .

15, Increase Indent: Increases the indentation of the current selection (to
the right). :

16. Outside Border: Places a border around the current selection; click
the drop-down for a wide selection of bordering options.

17. Highlight: Highlight the current selection; default color is yellow.

18. Font Color: Change the font color; the default/automatlc color is
black.

Document Wmdow

The area in which text is written, edited, formatted, etc. is called

document window. It comprises the largest area of the Word application
window. The document window also contains the following:

Insertion: The blinking vertical bar is called insertion point. It
indicates the place where typed text will be written in the document.
End Mark: The thick horizontal line specifies end of the document. It
is called the end mark. The end mark is displayed in Normal view
only,

I-Beam: The' mouse pointer appears as I-shaped object when it is
placed i in the document mndow It is also called I beam.

Status Bar

The Status bar appears at the very bottom of the screen aﬁd provides

such information as the current page, current section, total number of pages,
inches from the top of the page, current line number, and current column
number. The Status bar also provides options that enable you to track changes
or turn on the Record mode, the Extension mode, the Overtype mode, and
the Spelhng and Grammar check.

Inches from Top of Pa e
b J Track Changes

" Curr ; Overwrite
urrent Section . Column fiode
Page 10t T CBfa2 A6 U In iS5 col43 . HEC THX BT 0uR Engish(Uk G _
Li%e' 1 Extend Mode
Current Page - Record Mode
; Current Pageﬂ'otai Pages Spelling and Grammar Check
-Scroll Bar

The document window has scroll’ bars. At the rlght edge of the

document window is a vertical scroll bar, and at the bottom of the document

95 NOT FOR SALE - PESRP

window is the horizontal scroll bar. The scroll bars are used to move up and

down, right and left in the document window.
The Ruler

—
|I

SR T R T R S aﬂgﬂ@g%@&m Py

The ruler is generally found below the main toolbars. The ruler is used
to change the format of your document qmckly To display the ruler:
® Click View on the Menu bar.

° The option Ruler should have a check mark next to it. If it has a check
mark next to it, press Esc to close the menu. If it does not have a check
mark next to it, continue to the next step. '

o Click Ruler. The ruler now appears below the toolbars

View Buttons
Changes the layout view of the document to normal view, web layout

view, print layout view, or outline view.

Change in View

' In an effort to provide various ways in which to view your work in
progress and remain organized, Word XP offers five different views for your
document. The five views are Normal view, Print Layout view, Web Layout
view, Outline view, and Full Screen View.

Normal view is best used for typing, editing, formatting and proofreading. It

provides a maximum amount of space without rulers or page numbers

cluttering your view.

Web Layout view shows you what your text will look like on a web page.

Print Layout view shows you what your document will look like when it is

printed. Under Print Layout view you can see all elements of the page. Print

Preview shows you this as well.

Outline view is used to create and edit outlines. Outlme view only shows the

headings in a document. This view is particularly handy when making notes.

Full Screen view displays ONLY the document that you are working on. All

the other pieces of the Word window are removed except for one button that

allows you to Close View Screen. -

Making a New Blank Document W D-OCU men._t3 .

When Word is opened, a new blank :
document should automatically open. If not, then
you can begin a new blank document in a variety -
of ways. i

- First, find the "New Blank Document" =N W Blank Document |

icon, which looks like a blank sheet of paper, I—i

located underneath the menu bar in Word in what is called the "standard

toolbar." Click on the icon to bring up a new blank document.

96 ‘NOT FOR SALE - PESRP

Also, you can go to the menu bar and select File >> New...

(shortcut: Ctrl+N). To begin typing,
the new blank document.
Opening a Document -

To open to view, edit, or prmt a

first open up that file in Word. You

clicking on the "Open" folder icon
folder) located in the standard toolbar.
menu bar and navigate to File >>
Ctrl+0).
Saving a Document

When you are working with

any sort of media in any software, you

should be sure to save your work often.
In Word, there are numerous options
for saving documents in a variety of file
types.

To save a new, unsaved document, you

can Click on the Save icon
~shaped like a disk located on the
standard toolbar. Or, you can go to the
menu bar and select File >> Save...
(shortcut: Ctrl+S).

When vyou first create a
document, it has no name. If you want
to use that document later, it must
have a name so Word can find it.
Word asks for a name that first time
you save the document, and after that,
title bar at the top of the screen.

A dialogue box should appear,
offering you a number of options. To
save the document in the desired
location on your computer, locate and
select the folder on your computer.
Give your document a name in the file

= (with a picture of a

just click the cursor anywhere within

document, you must
can open a file by

Or, you can use the
Open... (shortcut'

; Q Save

Chrl+5] £

Note: The save in drop-down list
box lists folder options where
you can save the document. The
default folder that appears is
“Documents.” If you don’t want
to save it to this folder, or if you
want to save your document to
another disk, you can select
another one. Click on the down
arrow to browse,

the name you give it will appear in the

Please note that it's good
practice not to use spaces or
special characters in file
names. For example, a long
file name may look like this:

name text box. While you can give your document long names, make sure you

save it with a name you can remember.
To save a completely new doc

ument using previously existing (and

opened) text, you use the Save As option. Open the document that you wish

97

NOT FOR SALE - PESRP

to save as an entirely new file, go to the menu bar, and click on File >> Save

.as. In the file name text box, give your document a new name. Using this

option allows you to save multiple versions (with different file names) of a
document based on one original file.
Save As HE

[Joesvior! -] & -@ @ XD Took-
taMy Documents

8 My Computer

8 My Network Places

IC) 2-6-006

2 Positive

Rl 3 = |_Sm_
Placos Saveastype: [word Document F2 | C—"“'.&

Renaming Documents

To rename a Word document while using the program, select
File |Open and find the file you want to rename. Right-click on the document
name with the mouse and select Rename from the shortcut menu. Type the
new name for the file and press the ENTER key.
Close a Document

Close the current document by selecting File|Close or click the Close
icon if it's visible on the Standard Toolbar.

7.1.1 Editing a Document
The process of adding, inserting, and changing and deleting text in a
word document is called text editing. Similarly, inserting and changing
contents and appearance of a graphics is called graphics editing.
Following is a list of most commonly used editing procedures in Word:
Typing and Inserting Text
The Undo and Redo Commands
Selecting Text
Deleting Text
Moving Text
Copying Text
Paste Text

e @ & @ e o o

98 NOT FOR SALE - PESRP

Typing and Inserting Text
To enter text, just start typing! The text will appear where the
blinking cursor is located. Move the cursor by using the arrow buttons

on the keyboard or

positioning the mouse and

clicking the left button. The [B¢ginning of the line |HOME
keyboard shortcuts listed |End of the line END

below are also helpful when [Top of the document CTRL+HOME
oving thmsagh, e textiof O S Socument JETRLEEND

Move Action Keystroke

a document:
The Undo and Redo Commands

If you accidentally deleted text or
placed the wrong format on a block of text, K) v (¥ l
you can use the Undo command to reverse l
changes that you've made in your document. :

When you click on the Undo button, you Undo Redo
reverse your last action. To undo multiple actions, select them from
the Undo drop-down list. Multiple actions are undone in the sequence
performed. While most actions can be undone, there are certain
actions which cannot, such as saving or printing a document. If you
change your mind after using the Undo command, you can reverse it
by clicking on the Redo button.

Unless you are perfect typist, you probably have a few mistakes
in your document, or perhaps you have changed your mind about some
of the text in the document. In a word processing program, correction
and changes are easy to make.

Selecting Text - :

To change any attributes of text it must be highlighted first.
Select the text by dragging the mouse over the desired text while
keeping-the left mouse button depressed, or hold down the SHIFT key
on the keyboard while using the arrow buttons to highlight the text.

The following table contains shortcuts for selecting a portion of the
text:

[Selection Technique
Whole word double-click within the word
Whole paragraph |triple-click within the paragraph

Several words or [drag the mouse over the words, or hold down
llines SHIFT while using the arrow keys

‘Entire document fchoose Edit|Select All from the menu bar, or press

[CTRL+A

99 NOT FOR SALE - PESRP

Deselect the text by clicking anywhere outside of the selection
on the page or press an arrow key on the keyboard.

Deleting Text

Use the BACKSPACE and

DELETE keys on the keyboard to
delete text. Backspace will delete
text to the left of the cursor and
Delete will erase text to the right. To
delete a large selection of- text,
highlight it using any of the methods
outlined above and press the
DELETE key.

The Clipboard
You can view the elements
~on the clipboard by selecting

1ew|TooIbarlehpboard from the | 1 .
| pieces into your document,

_ either individually, or all at

menu bar.

Place the mouse arrow over

each element in the clipboard to-

view the contents of each item and
click on an element to add its

Note:

Word XP provides a Collect
and Paste, which provides
the means to manage
multiple pieces of
information. The Microsoft
Office XP Clipboard allows
you to copy up to twelve
pieces of text or pictures
from one or more
documents, e-mail
messages, Web pages,
presentations or other files.
You can then paste these

once using the Paste All
feature.

contents to the document. Click Paste All to add all of the items to
the document at once. Click the Clear Clipboard button (the icon

with an "X" over the clipboard
image) to clear the contents of the
clipboard.

~ When you copy and paste text, a
clipboard icon comes on the screen
‘which gives you an option on how

to paste the text.

- This is an example of the 'clipboard
: feature

Moving (Cuttmg) Text

Highlight the text that will
be moved and select Edit|Cut
from the menu bar, click the Cut
button on the standard tool bar, or
press CTRL+X at once. This will
move the text to a clipboard.

100

-

__ i&s X

B

eep Source Formatting

3 Match Destination Formatting

I(aep Text Only

apply Style or Farmattlng

NOT FOR SALE - PESRP

To move a small amount of text a short distance, the drag-and-
‘drop method may be quicker. Highlight the text you want to move,
click the selection with the mouse, drag the selection to the new
location, and release the mouse button.

Copying Text
To copy text, choose Edit| Copy, click the Copy button on the
standard toolbar, or press CTRL+C to copy the text to the clipboard.

Paste Text [S
To paste cut or copied text, move the cursor to the location

you want to move the text to and select Edit|Paste from the menu
bar, click the Paste button on the standard toolbar, or press
CTRL+V.
e Use the same methods to modify the style from the Modify Style

dialog box that were used for the New Style box.
e To only rename the style, type a new name in the Name field.
e Click OK when you are finished making modifications.
o Click Apply to update the style in the document.

7.2.3 Find and Replace
If you need to find a particular word or piece of text, you can use the
Find command. If you want to search the entire document, simply execute the
Find command. If you want to limit your search to a selected area, highlight
that area and then execute the Find command. After you have found the word
or piece of text you are searching for, you can replace it with new text by
executing the Replace command. -'
Find ~ Using the Menu
e Type the following:
Momi is from Punjab . She lives on the east side of Punjab. Her
daughter attends Punjab High School.
e Highlight: " Momi is from Punjab. She lives on the east side of
town. Her daughter attends Punjab High School."
Choose Edit > Find from the menu.
Type Punjab in the Find What field.
Click Find Next.
Note that " Punjab " is highlighted.
e C(Click Find Next. .
Note that the " Punjab " in “Punjab High School “ Punjab is
highlighted. :

101 ' NOT FOR SALE - PESRP

* Click Find Next. The following message should appear: "Word has
finished searching the selection. Do you want to search the
remainder of the document?"

e C(Click No.
e Click Cancel.
Find by Using Keys

¢ Highlight: " Momi is from Punjab. She lives on the east side of
town. Her daughter attends Punjab High School."
e Press Ctrl-f. e
 Follow steps 5 through 10 in the preceding section.
Similarly replace command can be performed by using menu
and keys too.

7.3 PARAGRAPH SPACING
To access the Paragraph formatting | Format I Tools Table Window
options, navigate to the menu bar, and select | A Font...
“Format” >> “Paragraph,” or right-click within
aparagraph S =il A L3 T ;
A window will appear with options for |§= Bullets and Numbering...
modifying spacing and indenting. Here, you can Borders and Shading. ..
choose to make the text in your document single |
or double spaced, as well as
edit the margins for the [M— e -
document. Indents and S | Uine andpage tress |
When you are [' e e Tl |
formatting a paragraph, youdo | m it ﬁg : %m 7 m th -
not need to highlig.ht the eI, ' 3 o B .8
entire paragraph. Placing the Loft: o B
cursor anywhere in the Right: 3 = oo =] =]
paragraph enables you to | '
format it. After you set a | Spadng

Pdtagraph

paragraph format, subsequent | m fort 3 F_fw STTae
paragraphs will have the same ot snge =] [- =
format unless you change their »l" beri: PR PR e 2y

format,

You will need text to
work with to petform the
exercises for this lesson, so
type the following exactly as
shown. End paragraphs where

you see the end-of-paragraph s | [] e |

102 NOT FOR SALE - PESRP

Aot el dful WU L

marker (¥). Press Enter once to end the paragraph, but do not leave spaces between
paragraphs. You will set the space between paragraphs during the exercise. Do not
press Enter to move to a new line -- Microsoft Word automatically wraps at the end of

a line.

Sample Paragraphs 1

We will use this paragraph to illustrate several Microsoft Word
features. It will be used to illustrate Space Before, Space After, and Line
Spacing. Space Before tells Microsoft Word how much space to leave before
the paragraph. Space After tells Microsoft Word how much space to leave
after the paragraph. Line Spacing sets the space between lines within a
paragraph.

We will use this paragraph to illustrate some additional Microsoft
Word features. It will be used to illustrate first-line indent. With first-line
indent, you can indent the first line of your paragraph. We will also look at
indentation. Indentation enables you to indent from the left or right margin of
your document.

Space Before and Space After

Space Before sets the amount of space before the paragraph. Space
After sets the amount of space after the paragraph. Following are the sample
paragraphs with Space After set to 12 pt. The exercises that follow give you a
chance to see how Space Before and Space After work.

Space After
Sample Paragraphs

We will use this paragraph to illustrate several Microsoft Word
features. It will be used to illustrate Space Before, Space After, and line
spacing. Space Before tells Microsoft Word how much space to leave before
the paragraph. Space After tells Microsoft Word how much space to leave
after the paragraph. Line Spacing sets the space between lines within a
paragraph.

We will use this paragraph to illustrate some additional Word features.
It will be used to illustrate first-line indent. With first-line indent, you can
indent the first line of your paragraph. We will also look at Indentation.
Indentation enables you to indent from the left and/or right margins of your
document. '
Line Spacing

Line Spacing sets the amount of space between lines within a
paragraph. Single spacing is the default. The spacing for each line is set to
accommodate the largest font on that line. If there are smaller fonts on the
line, there will appear to be extra space between lines where the smaller fonts
are located. At 1.5 lines, the Line Spacing is set to one-and-a-half times the

103 NOT FOR SALE - PESRP

single-space amount. For double-spaced lines, the line spacing is set to two
times the single-space amount. :

First-Line Indent

This demonstrates how you can indent the left side of the first line of
your paragraph, as in the following example.

The first-line indent feature indents the first line of the paragraph. The
amount of the indent is specified in the By field. The remainder of the
paragraph is indented by the amount specified in the Indentation field.
Indentation _

Indentation allows you to indent your paragraph from the left or right
margin. The following examples show different types of indentation.

We will use this paragraph to illustrate several Word features. We will
illustrate Space Before, Space After, and Line Spacing. Space Before tells
Word how much space to leave before the paragraph. Space After tells Word
how much space to leave after the paragraph. Line Spacing sets the space
between lines within a paragraph.

We will use this paragraph to illustrate some additional Word features.
We will illustrate first-line indent. With first-line indent, you can indent the
first line of your paragraph. We will also look at Indentation. Indentation
enables you to indent from the left or right margins of your document.

Alignment
Microsoft Word gives you a choice of several types of alignment. Left-
justified text is aligned on. the left side. It is the default setting.

Sample Paragraph

This is a sample paragraph. It is used to illustrate alignment. Left-
justified text is aligned on the left. Right-justified text is aligned on the right.
Centered text is centered between the left and right margins. You can use
Center to center your titles. Justified text is flush on both sides.

Right-justified text is aligned on the right side.
Right-Justified
Sample Paragraph

This is a sample paragraph. It is used to illustrate alignment. Left-
justified text is aligned on the left. Right-justified text is aligned with on the
right. Centered text is centered between the left and right margins. You can
use Center to center your titles. Justified text is flush on both sides.

Centercd text is centered between the left and right margins.

Centered
Sample Paragraph

This is a sample paragraph. It is used to illustrate alignment. Left-
justified text is aligned on the left. Right-justified text is aligned with on the
right. Centered text is centered between the left and right margins. You can
use Center to center your titles. Justified text is flush on both sides.

104 NOT FOR SALE - PESRP

Justified text is flush on both sides.
Justified
Sample Paragraph

This is a sample paragraph. It is used to illustrate alignment. Left-
justified text is aligned on the left. Right-justified text is aligned with on the
right. Centered text is centered between the left and right margins. You can
use Center to center your titles. Justified text is flush on both sides.

The Right, Left, center and justified alignment can be performed by
using key icon and menu For example if you want to center align of your MS-
word document. It can be performed by using three different paragraph
alignment methods.
® Paragraph alignment by using keys
s Paragraph alignment by using icon
v Paragraph alignment by using menu
Center - Using the Menu
© Highlight the first paragraph you typed, beginning with "We will use"

and ending with "within a paragraph."

. Choose Format > Paragraph from the menu.

. Choose the Indents and Spacing tab.

. Click to open the Alignment pull-down menu.

. Click Centered.

. Click OK. The paragraph is now centered.

Justify and Center by Using Keys

© Highlight the text. .
3 Press Ctrl-e. The text is now centered. “
B Press Ctrl-j. The text is now justified.

Justify and Center by Using the Icon

. Highlight the text.
5 Click the Center icon . The text is now centered.

Click the Justify icon . The text is now justified.
= Other paragraph alignments can be performed by using these three
methods

Hanging Indent
The hanging indent feature indents each line except the first line by
the amount specified in the By field, as shown in the example.
Hanging The hanging indent feature indents the first line of the
Indent: paragraph from the margin by the amount specified in the Left
field. The amount in the Left field plus the amount specified in
the By field indent all subsequent lines.

105 NOT FOR SALE - PESRP

When you begin typing the following paragraph, you might find that
your paragraph is indented one inch on both sides. When you start a new
paragraph in Microsoft Word, the setting from the previous paragraph carries
over. If you wish, you can reset the indentation. If you choose not to reset the
indentation, it will not affect your ability to perform the exercise.

° Type the following: .
Hanging Indent: The hanging indent feature indents the first line
by the amount specified in the Left field. Subsequent lines are
indented by the amount specified in the Left field plus the amount
specified in the By field. Highlight the paragraph you just typed.
Choose Format > Paragraph from the menu.

Choose the Indents and Spacing tab.

In the Special field, click to open the pull-down menu.

Click Hanging.

In the By box, type 2.0".

Click OK.

Place the cursor after the colon following "Hanging Indent."

Press the Tab key.

74 FONTS
In Microsoft Word, the term font is used to refer to the typeface of your text.
You can change the font (the "family" of type you use for your text). This feature is
illustrated in the following
Change the Font - Using the Menu
= Type the following:
Arial Courier Times New Roman
Highlight "Arial."
Choose Format > Font from the menu.
Choose the Font tab.
In the box below the Font field, click "Arial."
Click OK.
Highlight "Courier."
Choose Format > Font from the menu.
Choose the Font tab.
In the box below the Font field, click "Courier New."
Click OK.
Highlight "Times New Roman."
Choose Format > Font from the menu.
Choose the Font tab.
In the box below the Font field, click "Times New Roman."
Click OK.
Your text should now look similar to the following:
"Arial Courier Times New Roman"

e o o & & o o »

106 NOT FOR SALE - PESRP

Change the Font by Using the Formatting Toolbar
: 44 Normal v Times New Roman « 12 '1 B 7 U ‘.E =E

Highlight "Arial Courier Times New Roman."

Press Ctrl-spacebar. Ctrl-spacebar sets the formatting back to the
default.

Highlight "Arial."
Click to open the Font pull-down menu on the Formatting toolbar.

Click "Arial."
Next, highlight "Courier New."
Click to open the Font pull-down menu on the Formatting toolbar.

Click "Courier New."
Next, highlight "Times New Roman."
Click to open the Font pull-down menu on the Formatting toolbar.

Click "Times New Roman."
Your text should now look similar to the following:
"Arial Courier Times New Roman"

Bold, Underline, and Italicize

You can bold, underline, or italicize when using Word. You also can
combine these features -- in other words, you can bold, underline, and italicize

i Menu - Microsoft Word
Bl Edt Yew [nset Fomat Took Table Window Help
DEEs8 Ry iaAad| v - qmoe .7
4 Normal+ 14 pt « TimesNew Roman = 14 'in 2°n ngﬁ s e

X

“% 13

Menu: Bold Italic Underline these words. All three Regular

Menu: Bold Italic Underline these words. All three Regular |

- £ 3

| © Menu: Bold Italic Underline these words. All three Regular @
¥

=aEs | i 2
omws [y Adoshepes \ NJOH MG HE - L-A-=5 2
Page 1 Sec 1 11 a&D03 n1l Coll REC TRK EXT OWR_English 4

a single piece of text. In the exercise that follows, you will learn three different
methods for bolding, italicizing, or underlining when using Word. You will
learn to bold, italicize, or underline by using the menu, an icon, or the keys.

107 NOT FOR SALE - PESRP

Bold - by Using the Menu, Icon and Keys

“ On the line that begins with Menu, highlight the word Bold. To do so,
place the cursor before the letter "B" in "Bold." Press the F8 key; then
press the right arrow key until the entire word is highlighted.

. Choose Format > Font from the menu.
The Font Dialog box opens.

. Click Bold in the Font Style box.
Click OK to close the dialog box.

* Click anywhere in the text area to remove
the highlighting. You have bolded the
word bold.

Note: You can see
the effect of your

“selection in the
Preview window. To
turn off the bold,
click Regular.

. On the line that begins with "Icon," highlight the word "Bold." To do
so, place the cursor before the letter "B" in "Bold." Press the F8 key;
then press the right arrow key until the entire word is highlighted.

0 Click the Bold icon ﬁ on the toolbar.

® Click anywhere in the Text area to
remove the highlighting.

- On the line that begins with "Keys,"
highlight the word "Bold." To do so, place

Note: To turn off
bold, highlight the
text and press the
Bold icon again

the cursor before the letter "B" in "Bold." Press the F8 key; then press

the right arrow key until the entire word is
highlighted.

. Press Ctrl-b (hold down the Ctrl key while
pressing b).
Click anywhere in the Text area to
remove the highlighting.

8 Similarly Italicize and Underline options
can be performed by using menu, icon and
keys.

Font Size

Each font can be used in different sizes. Font
sizes are measured in points, and a point is
actually 1/72 of an inch.

Headers/Footers:

Headers and footers are important aspects of
a Word document if you wish to include
information such as page numbers and
headings on every page. To access the header
and footer options, go to the menu bar and
select “View” > > “Header and Footer."

108

Note: To turn off
Bold, press Ctrl-b
again. You can also
remove formatting
by pressing Ctrl-
spacebar.

Wiew I Insert Format Too
Normal |

Eg web Layout

Print Layout

Qutline
Task Pane

Toolbars b

E Cocument Map

NOT FOR SALE - PESRP

R R . (N R S T T G S g LNy Wy . N W SR W R

BEF RO UG P EEG g

A dotted-line box called "Header" will automatically appear, as well as
a sub-menu for formatting header and footer properties. The cursor will
already be placed in the Header box. If you scroll down on your current page
opened in Word, you will see a dotted-line box called "Footer." To add text in
the Header or the Footer, simply click the cursor inside either one of the
boxes, and type the text you want. To add page numbers to your document,
click your cursor inside of the footer box. Then,
o Click on the icon shaped like a sheet of paper with a "#" inside. The

page number will then be inserted and applied to all of the pages in

your document.
Bulleted and Numbered Lists

° Click the Bulleted List button or Note: You can also
2 type the text first,

Numbered List button = on the | highlight the section,

formatting toolbar. and press the Bulleted
° Type the first entry and press ENTER. List or Numbered List

This will create a new bullet or number | Puttons to add the

on the next line. If you want to start a bullets or numbers.

new line without adding another bullet

or number, hold down the SHIFT key while pressing ENTER.

Bullets and Numbering

’ g
Buleted Mumbered | Outine Numbered | List styles |
None 1,
.
A §; - o
B. il ——
S e
& Restart aumbaring € Continus previous list M_l
Reset l . | OK ._ l Cm I

109 NOT FOR SALE - PESRP

®* Continue to typing entries and press ENTER twice when you are
finished typing to end the list.

=

Use the Increase Indent 5= and Decrease Indent!o—| buttons on the
formatting toolbar to create lists of multiple levels. The bullet image
and numbering format can be changed by using the Bullets and

‘Numbering dialog box. '

o Highlight the entire list to change all the bullets or numbers, or place
the cursor on one line within the list to change a single bullet.

o Access the dialog box by selecting Format|Bullets and Numbering

from the menu bar or by right-clicking within the list and selecting
Bullets and Numbering from the shortcut menu.

e Select the list style from one of the seven choices given, or click the
Picture... button to choose a different icon. Click the Numbered tab
to choose a numbered list style.

e Click OK when finished. ;

e Tables are used to display data and there are several ways to build
them in Word. Begin by placing the cursor where you want the table to
appear in the document and choose one of the following methods.

Drop Caps :

A drop cap is a large letter
that begins a paragraph and drops :
through several lines of text as shown | position

below. £] = | n L mi :
Add a drop cap to a paragraph e W:] W: i
by following these steps: — m - 8 -

e Place the cursor within the Nome Dropped Inmargin
paragraph whose first letter | options ———— L
will be dropped. Earbl : -

2 Select Format|Drop Cap [Ties NewRaman ;I

from the menu bar. s

o The Drop Cap dialog box Lnes adon, o
allows you to select the Distance from text:. 'iG"' =
position of the drop cap, the — e —
font, the number of lines to : I‘ ‘_‘I : i
drop, and the distance from . T '
the body text.

° Click OK when all selections have been made.

@ To modify a drop cap, select Format | Drop Cap again to change the
attributes, or click on the letter and use the handles to move and resize _
the letter. :

110 . NOT FOR SALE - PESRP

Page Margins
The page margins of the document can be changed using the rulers on

the page and the Page Setup window. The ruler method is discussed first:

° Move the mouse over the
area where the white
ruler changes to gray.

° When the cursor becomes
a double-ended arrow,
click with the mouse and.
drag the margin indicator]
to the desired location.

- Micf@soft Word
Fle Edt view Insert Format Tools
D8 vy &l

44 normal +Bold ~ Times New Roman - 12

Ll Documenti

TPTTT VR [T TR TS

' Hagmg Indent

e = Release the mouse when
the margin is set. !

o The margins can also be
changed using the Page

Setup dialog box:

Insert Page Numbering

As noted earlier, you may insert page numbering into a document via
the “Header and Footer” properties. You may also insert page numbering
without using the headet/footer properties. ey

Click “Insert” on the menu bar and then click “Page Numbers...”
The “Page Numbers” dialog box appears on top of the document.

You may use

the “Position:” drop Page Numbers

box to position the Postion; Preview
page number at the § Botiom of page | =
top or bottom of the Qe o =
page. You may use |Right B Bl ——
the “Alignment:” ¥ Show number on first page :: =

drop box to align
the number at the
left, centre, right, , :
inside or outside of the document. You may click to check the “Show number .
on first page” checkbox to allow page one to display number 1 or uncheck it to
hide number 1 on the first page. Click the “Alignment” drop box to align the
page number to the right. Then click “OK”. See that the page number has
been re-aligned to the right side of the page. :
Non-printing Characters :
Word can display special symbols on the screen that show where you
have pressed enter, the spacebar or the Tab key in your document. These non-
printing characters are useful when you are editing documents and making

A —-OK =

| Format...

1113 e NOT FOR SALE - PESRP

&5

sure that the text placement is exactly as you want it to be. To display these

special symbols, click the Show/Hide button on the Standard toolbar.
PREVIEW AND PRINTING A DOCUMENT

You can preview a document before sending 1t to the printer for output. Do

the following to preview the document:

Click the “Print Preview” button on the Standard tool bar. MS Word opens a
new window with the document in preview mode. You will know that you are
in print preview mode because the word “Preview” in parenthesis after the
name of the document in the title bar. Notice that the entire page fits in the
window as well. -

€lick the “close” button on the print preview tool bar to exit print preview
mode and return to the document

Click on the “Print” button |

Page Size and Orientation
This feature allows you to change and control the orientation page

within the Page Setup dialog box.

e Select File|Page e
Setup and choose Page Seiup
the Paper Size tab. | -

3 Select - the proper iy - Lo
paper size from the | o & = Bottom: [1© =
drop-down menu. | e i = mee[iz =
Change . the- = ';guttar:_ r—-? Guttar position: l-!.—ef?—j.

orientation from | & 0 n e

on the formattmg tool bar

-Margns I Papcr I Laynut |

Portrait or | [Fe= W
Landscape by | @
checking the Portrat Landscape - :

2 .'. Pm S FLLlAE A, i = ’: e SR AT
.correspondmg radio e e =
button. ; _ ARG sy &

e The length and L
: breadth of a page of | appiyte:
a document is called | [whoedocument — ~|
page size. Page size G
of a document is
defined in the Page

Lk

Setup dialog box. | pefaut. |] cance |
To define page size:. ——
e Click File menu and select Page Setup

112 ' NOT FOR SALE - PESRP

e o e R]

Select Paper Size tab and select appropriate page size from a list of
given standard sizes. Some standard sizes and their dimensions are as

follows:

Letter: paper size of 8.5 by 11 inches
Legal: paper size of 8.5 by 14 inches
A4 paper size of 8.27 by 10.5 inches

7.6 AUTOMATIC FEATURES :

As you type text into a document, red or green wavy lines may appear under
certain words. The Automatic Spell Check places non-printing red wavy lines to
indicate that the word is not recognized by the Word dictionary. Green wavy lines
indicate that the phrase may not be grammatically correct. In the example below, the
word 'example’ is spelled wrong, indicated by the red wavy line underneath the
misspelled word. ' '

Another automatic editing feature of Word is AutoCorrect. AutoCorrect
automatically corrects commonly misspelled text as it is entered. For example "teh" is

- replaced with "the" as soon as the space bar is pressed. Word has a number of default

AutoCorrect entries. Additional entries can be added by the user,
AutoText and AutoComplete = ' |
Another automatic feature of Word is AutoText. AutoText entries
can be used to quickly assemble a document. As soon as you begin to type a
commonly used word, a yellow AutoText flag will appear. To accept the flag,
- hit the Enter key. To override the AutoText entry, simply continue typing,
and the flag will disappear. :

AutoComplete . ;

o AutoCorrect: English (U.S.)

AutoComplete enables [esisaisi P— :

. A e o Awotet | auofomat | smarags
you to insert entire items — | e
such as dates and AutoText W o gl ops i e

entries — when you type a few

; o !V"Cg.nrre_thWGm_ii_:iai.CApltais'_. i Exceplions... j
identifying characters. In the | Fcotde et emees T
example below, the date has - ¥ Capitalize First letter of table cells I Corect keyboard setting
become an AutoComplete | * Sl
i Cotrect accidental usage of cAPSLOCK key

entry. . . : i e

Word eall -{—W-Rep.lm;extasyqutype--—~ o

Orl automatica ¥ Replace: wAth: % Plaintet £ pormatied e

corrects many commonly | |] i _
misspelled words and (';- — A e :

: ; : SEEEE IR : _ _ o]
punctuation marks with the i g T B
AutoCorrect feature. To view | 1 e e o
the list of words that are i e e o
automatically corrected, select W Automaticlly use suggestions from the speling checker o
Tools | AutoCorrect. This may |— ST ey s e

.] ; s SO ’ Cancel J 3
be a hidden feature so click the : : :

113 NOT FOR SALE - PESRP

Jouble arrows at the bottom of the Tools menu listing if the AutoCorrect
choice is not listed. ‘ ' :

Many options including the accidental capitalization of the first two
letters of a word and capitalization of the first word of the sentence can be
automatically corrected from this page. If there are words you often misspell,
enter the wrong and correct spellings in the Replace and With fields.

Spelling and Grammar Check _
Word will automatically check for spelling and grammar errors as you
type unless you turn this feature off. Spelling errors are noted in the document
with a red underline. - :
Grammar errors are
indicated by a green lcwtoso 0
underline. To disable [1f-there-ave- words yow often- misspell,: enter g@
this feature, select the*m-n_ngand-‘::urr?cbspel!ings-in-the- 2
Tools] Options o .Replace- and-\MthL_flel_ds
the menu bar and
click the Spelling and
Grammar tab on the
dialog box. Uncheck
"Check spelling as |+ T
you type" and "Check Dictiomary langusget. - JEngish (U.5.)
grammar as you IV ety

" type", and click OK.

Spelling and Grammar: English (U.S.)

~ Ignore Once

) Ighnﬁe'_agbe -1
Suggestions: g |

71 g'laﬂge g

To use the spelling and grammar checker, follow these steps: -

e Select Tools| Spelling and Grammar from the menu bar.

The Spelling and Grammar dialog box will notify you of the first
mistake in the document and misspelled words will be highlighted in

red.

o If the word is spelled correctly, click the Ignore button or click the
Jgnore All button if the word appears more than once in the
document., frient 3 : Sl

° If the word is spelled incorrectly, choose one of the suggested spellings

in the Suggestions box and click the Change button or Change All
button to correct all occurrences of the word in the document. If the
correct spelling is not suggested, enter the correct spelling in the Not
In Dictionary box and click the Change button. : .
e If the word is spelled correctly and will appear in many documents you
: type (such as your name), click the Add button to add the word to the
dictionary so it will no longer appear as a misspelled word. <

‘114 : NOT FOR SALE - PESRP

As long as the Check Grammar box is checked in the Spelling and
Grammar dialog box, Word will check the grammar of the document in
addition to the spelling. If you do not want the grammar checked, remove the -
checkmark from this box. Otherwise, follow these steps for correcti_ng

grammar:

e If Word finds a grammar mistake, it will be shown in the box as the
spelling errors. The mistake is highlighted in green text.

o Several suggestions may be given in the Suggestions box Select the
correction that best applies and click Change.

o If no correction is needed, click the Ignore button.

_ s
Synonyms -] : - z =

_ Word 2000 has a new featute for 0l 7|
finding synonyms. Simply right-click on |5 :
the word and select Synonyms from the | ficemstimems..
shortcut menu. From the list of suggested
words, highlight the word you would like

E‘,aragr"aph. i

 Seleck Text with Similar Formatting

to use or click Thesaurus... for more [T . | deddeon
options. -
: Thesaurus Thesaurus...

~ Ifyoufind yourself overusing a particular word and want to find a good
synonym for it. To use the thesaurus, select Tools | Language | Thesaurus from
the menu bar or select it from the Synonyms shortcut menu as detailed above.
A list of meanings and synonyms are given on the windows. Double-cllck on.
the words in the _ _
Meanings N atoae Thesaurus: English (U.S.)
click the Look Up [T
button to view
similar words.
Double-click

‘words in the |
Replace ~with
Synonym box to
view synonyms of

those words.
Highlight the =
word you would | = Repl

like to add and :
click the Replace button.

i)

115 . NOTFORSALE-PESRP |

Action Keystroke kgAction Keystroke
Document actions Text Style _
Open a file CIRL+O Font face CERL+SHIFT +F
New file CTRL+N Font size CTRL+SHIFT+P
IClose a file |CTRL+W | |Bold CTRL+B
Save As Ei2 Altalics CTRL A1
Sive CTRL+S or Underline GIBRL+U
SHIFT+FI2 | IDouble underline [CTRL+SHIFT+D
Lot Breviey CTRL+F2 | |Word underline |CTRL+SHIFT+W}
Print CTRL+P All caps CTRL+SHIFT+A
Show/Hide paragraph CTRL+* IChange case SHIFT +F3
o ' Subscript CIRL+=
ciclliog and oo 1 Superscript CTRL+SHIFT+=
Help. . - Make web hyperlink|CTRL+K
Find CIRLEE :
Replace CIREAH
1Go To CTRL+G Tables
Cursor movement Go to next
Select all - entire cell Tab
document gl Go.to :
Select frbm cursor to . previous cell e
Beginning of line iR Go to
' . beginning of |ALT+PageU
eSsl;ztf 1{1;? CUrsor to SHIFT +END Coﬁllmn g : geup
Go to beginning of line [|HOME Highlight to
Got6 end of iné END beginning of ALT_+.SHIFT+ PageUp
IGo to beginning of - column
document I ome Sj:;:‘nd of ALT+PageD0wn
Go to end of document [CTRL+End '
Highlight to :
end of ALT+SHIFT +PageDown
Formatting column ;
Cut - "CTRL+X Go to ALT+Home
116

NOT FOR SALE - PESRP

Copy CTRL+C beginning of

Paste CTRL+V o -

Undo CTRL+Z Highlight to

Redc CTRL+Y E;egnnmg of |ALT+SHIFT+Home

Format painter CTRL+SHIFT+C} ¥ Gt _

Left alignment |[CTRL+L oM ALT+End

Center alignment |CTRL+E IHiohli

Right alignment CTRL+R .- gﬁ%ﬁtﬁvm ALTAHSHIET+End

juetitnd CIR i bcog“lf‘-“ CTRL+SHIFT+ Enter

: Ezi:ite PRV CTRL+Backspace ré . '

Apply bulleted list |[CTRL+SHIFT+L Miscellaneous

Indent CTRL+M Copyright symbol - ©|ALT+CTRL+C

Page break CTRL+Enter Date field ALT+SHIFT+D
IGo to footnotes ALT+CTRL+F
Show/Hide 1 CTRL+SHIFT +8
Thesaurus SHIFT+F7

| Fill in the Blanks: :
= Eapei size 8.5 x 11 inches is caf_{[’e'd 0

(i) + Fontis also called a

size.

(iii) The keyboard shortcut to save a document in MS-Word is

(iv) . There are

(v) Start button is on the

(vi) Shortcut command used for printing is

bar.

items on the menu bar of MS-Word.

(vii) In MS-Words default font size is

(viii) Ctrl + Cis used for

(ix) The Thesaurus can be used to look up synonyms and

(x) The Office Assistant is by default.

117 : ' NOT FOR SALE - PESRP

2 Choose the correct answer:

@)
(i)

(ii)
()
)
(vi)

(vii)

(viii)

(ix)

Which keyboard shortcut is used for double underline?

(a) Crtrl + Shift + D b) Crl]

(c) Ctrl + Shife M~ (d) Shift + F3

MS Word is a based program.
(a) Windows ~ (b) System -
(c) DOS (d) None of them

Which of the following bars provide the mformatxon about apphcamon
software?

(a) Menu bar (b) Tool bar
~ (c) Status bar ~ (d) Scroll bar
Press Ctrl + 2 keys for spacing.
(a) Single - (b) Double
(c) Triple (d) None of them
Clicking on the Print icon prints the document currently
active in Word. 2
(a) manually - (b) automatlcaliy
() (a) and (b) (d) None of them

Which of the following is used to select the paragraph? -
(a) Single-click (b) Double-click

(c) Right-click ~ (d) None of them

Ctrl + Y is used for :

(@) Undo (b) Find

(c) Page break (d) Redo

Which one option is not in Edit Menu?
(a) Undo "~ (b) Redo

(c) Find (d) Font -

Which keyboard shortcut is used to make the selected word bold?
(a) Ctrl + Shift + B (b) Shift + B -
(c) Alt+B - (d) Cual+ B

3. Write T for True and F for False statements.

(i)

(ii)
(iti)

A word processing program is used for calculating income, expend1ture,
balance sheet etc. S
Word processor is also called eiectromc typewriter.

Cul + U underline the selection.

Status bar is located at the top of application window.

Print Setup allows you only to select the printer.

Ctrl + X cuts the selection. .

Normal view of a document does not dlsplay mformanon such as header
and footer. '

118 " NOT FOR SALE - PESRP

2 L

© ®

10.

12.

13.
14,

(viii) A drop cap is a large Jetter that begins a paragraph and drops through
several lines of text. -
(ix) - F2 keyis used for help in MS-Word.

(x) Spell Checking can be used to quickly check the spelling in a document.

What is meant by Title Bar?
Describe the use of chpboard in MS-Wored.
How would you customize your toolbars?

What is meant by Drop Cap?

Differentiate between Formatting Toolbar and Standard Toolbar
Define the different views of the document.

How can you run the spell checker of MS—Wored? —

What is the use of Print Preview! _

What are the methods for changing the margins in a document?
Differentiate between Ahgnment and Indent in MS—Worcd

(i) Letter (i) Typeface (i) Ctrd +35

(iv) 9 ' (v) Taskbar (vi)j Cul+B
(vii) 12 . (viii) Copy (ix) antonyms :

(x) Displayed

() % |) a (ﬁi) |

C
@) b e (vi) b
(vii) b -~ (viii) d . (ix) d
@) F g (i) T
s e (v) F : _ (vi) T
(vid) T - (vii) T e

x) T

119 : NOT FOR SALE - PESRP

Glossary
A
Analysis: At this stage a problem is decomposed into sub-problems.
Algorithm: It is a step-by-step procedure to solve a problem in finite number of steps.
Arithmetic Operators: These operators are used to perform arithmetic operations on values (numbers)
Array: An array is a collection of contiguous memory locations which can store data of same type.

B

Built-in Functions: These are functions packaged with every implementation of BASIC.

C

Coding: The process of converting an algorithm to a program using a programming language is known

as coding. :

Constant: A constant is a named memory location whose contents can not be changed during the

program execution. Like a variable, the value of a constant is accessed by its name.

Control Structures: These are fundamental structures of all high level programming languages. These

are used to control the flow of execution of a program. _ : .

Conditional Transfer of Control* In this case, the program consob switches to a specific line number
by skipping one or more program lines depending on a certain condition.

D

Desk Checking: It is the process of carefully observing the working of an algorithm, on the paper, for
some test data. Algorithm is provided a variable set of input for which the output is examined
Debugging: It is the process of finding and removing errors in the program

Deployment: Implementation of the program is also referred to as deployment of the program (see
implementation also) ' '

Documentation: It is a detailed description of a program’s algorithm, design, coding method, testing,
and proper usage. : :

Direct Mode: In this mode GW-BASIC commands are executed as they are typed.

Data files: Data files contain data and information needed for programs.

Drop Cap: It is a large letter that begins a paragraph and drops through several lines of text as shown
below. ; : :

E :
- Execution: When a program has been loaded, the CPU follows instructions specified in it one-by-one,

This process is called execution of the program.

EOF: At the end of every file, a special character is stored which is used to identify the end of file. This

is known as End Of File marker.

T
- Flowchart: It is the pictorial representation of an algorithm. _
Field: A group of related characters to have a unit of information is called field or data field.

G

GW-BASIC: Genral Work Beginners All Purpose Symbolic Instructions Code. It is referred to as Gray
- Wolf Beginers All Pupose Symbolic Instructions Code '

1

Implementation: Installation of the program in the user’s environment is known as implementation of
the program.

120 NOT FOR SALE - PESRP

Indirect Mode: This mode is used to type programs. Programs are exphc:ltly executed usmg RUN
command.

IDE: Integrated Development Environment

Input Statements: These statements are used to provide data to the program.

Intrinsic Functions: Built-in functions are also called intrinsic functions (see also built-in function)

K

Keywords: Reserved words are also called keywords (see reserved words also)

L

Logic Error: This type of etror occurs when a program follows a wrong logic.
Loading: Before execution, every program is brought into memory from the secondary.storage. This

‘process is known as loading the program.

Logical Operators: These operators are used to combine slmple conditions to’ construct a.compound
condition.

Loop: Loop structure is used to repeat a number of statements up to a specified number of times or
until a specified condition fulfilled.

M

Maintenance: It is an ongoing process of upgrading the program to accommodate new hardware or
software requirements.
Numeric variable: A variable which can only store a numeric value is called numeric variables.

Numeric Constant: A constant which can only store a numeric value is called numeric constant.
Nested Loop: A loop inside the body of another loop is called a nested loop.

Operator’s Precedence: It determines the order of evaluation of an operator in an expression.
Output Statements: These statements are used to get data from the program.
One-dimensional Array: This type of array is also known as linear array or vector array. It consists of

only one row or column.

P

Problem-solving: Problem-solving is a skill to approach the solutlon of a given problem and it can be
developed by following a well organized approach. 4 : :
Programming: It is a problem solving activity that uses computer to bOIVB a problem.

Program: A program is a set of instructions given to the computer in a programming language like
BASIC, which the computer follow to solve a problem. -

Program file: A program files contains instructions for the CPU.

Pixel: It is a picture element: A pixel is represented by one Dot on the screen.

Q
QBASIC: Quick BASIC

R

Requirements Document: It is an abstract description of the software which provides a basis for design
and implementation. It also describes the features and restrictions of the system.

Runtime Error: This type of error occurs when the program directs the computer to perform an illegal
operation such as dividing a number by zero.

" Reserved Words: These are the words, which have predefined meaning in BASIC

121 . NOT FOR SALE - PESRP

Relational Operators: These operators are used to compare two values.

Record: Group of related fields is called record. .
Random Access File: The data contained in a random access file is accessed directly from where it is
physically stored on the disk.

Resolution: Number of pixels on the screen

S

Syntax: The grammatical rules of a programming language to write programs are referred to as syntax
of that programming language. :
Syntax Error: This type of error occurs when the program violates one or more grammatlcal rules of
~ the programming language =
. String: A string can be defined as a sequence of characters enclosed in double quotations.
String Variable: A variable which can store strings is known as string variable. In GW-BASIC, a dollar
sign ($) is followed by the string variable’s name.
String Constant: A constant which can store a string is known as string constant. Like a variable, a
dollar sign (3$) is followed by the name of a string constant.
Selection Structure: It chooses which alternative program statement(s) to execute depending on a
condition. K
Subprogram: A larger program is dmded into smaller, manageable piece of codes are called
subprogram.
| Subroutine: It is a self-contained set of statements that can be used from anywhere in a program. The
i subroutine performs a specific task, and then returns control to the part of the program that calls the
¢ subroutine. :
Sequential Access File: The data contained in a sequential access file is accessed in the order in which
it is physically stored on the disk.
Serif Font: These fonts have some extra decorative lines on the edges of the characters e.g. Times New
Roman.

Sans-Serif Font: These fOI'ltb do not have extra decorative lines on the edges of the characters e.g.
Arial.

1
Top-Down Design: The design in which a problem is d1v1ded into smaller sub-problems, to approach
the solution is called top-down design.
Testing: The process of evaluating the program to verify that it works as desired is known as testing.
Two-dimensional Array: It is also known as table or matrix. It can be thought of as a 2 X 2 matrix
consisting of two rows and two columns. :
Thesaurus: Dictionary feature in MS-Word

U
Updating: It is the process of introducing minor improvements in the program to meet the changing
requirements of the user. :
Unconditional Transfer of Control: In this case, the program's control switches to a specific line by
skipping one ore more lines without depending on a condition.
User-define Function: A user-defined function is written by the programmer to meet certain
programming requirements. '

v

Variables: These are memory locations which are used to store data and program’s computanonai
results during the program execution. :

122 ~ NOT FORISALE - JESRP

-

INDEX

Analysis, 1, 2
Algorithm, 4-9

Auto, 20

Avrithmetic operator, 28
Assignment operator, 30
Array 53-58

ABS function, 61

Auto Text, 113

Auto Complete, 113

B

Flowcharﬁ, 2, 8-10

FILES command, 22
FOR-NEXT, 48
FIX function, 63

- Built-in functions, 61
BEEP function, 64

C

GW-BASIC, 13
GOTO statement, 41-42
GOSUB...RETURN, 69

Coding, 1, 3 .
Character set of BASIC, 16
Constant, 18
CLEAR, 20
s 20
CONT, 27
Concatenation Operator, 30
Control structures, 41

> CHRS$ function, 67
COLOR statement, 81
CIRCLE statement, 85

Implementation, 2, 4
Indirect mode, 13
INPUT, 35

IF Statement, 45
IF-ELSE Statement, 46
INT function, 62

Keyword, 17
KILL, 22

Desk Checking, 2
Documentation, 4
Debugging, 3, 9
Direct mode, 13-14
DELETE, 21

DATA statement, 33
DIM, 55

DATES$ function, 65
DRAW statement, 85
Drop Caps, 110

E

Logic error, 3

LSIE 28

LOAD, 23

LLIST, 26
LPRINT, 26
Logical operator, 29
LOG function, 64
LEN function, 65
LEFT$ function, 67
LINE, 84

EDIT, 21
END, 27

Maintenance, 4, 9

MKDIR, 24

MID$ function, 66

Medium Resolution Mode, 79

Numeric variable, 18
Numeric constant, 18
NAME, 24

- Nested loop, 50

NOT FOR SALE - PESRP

O

Operator precedence, 31°
ON GOTO statement, 43
ON ERROR GOTO, 44
One-dimensional array, 56

P

Problem-solving, 1
Program, 3
Programming, 1, 3
PRINT, 36

PRINT USING, 37
Pixel, 79
PALETTE, 83
PSET, 83

Q -

QBASIC, 13

R

Requirements Document, 2
Runtime error, 3 .
RUN command, 25
Reserved word, 17
- RENUM, 24

"~ RMDIR, 25
REM, 27
Relational operator, 29
READ, 33
RESTORE, 34
RND function, 63
RIGHT$ function, 67
Random file, 74

124

Syntax Error, 3
Step-form Algorithm, 5
String variable, 18
String constant, 19
SAVE, 25

SYSTEM, 26

STOP, 28 -
Sequence structure, 41
SOR function, 62

SIN function, 62

SPC function, 64
SPACES$ function, 66
Subroutine, 69
Sequential file, 70
SCREEN statement, 80

Top-down design, 2
Testing, 3-4
Two-dimensional array, 57
TAB function, 63

Text Mode, 79

Thesaurus , 115

Update, 1, 3

Variable, 17 :
VAL function, 65

W

WHILE-WEND, 49
Word processing, 89

- NOT FOR SALE - PESRP

= e e

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126

